梯形的面积教学设计

2023-03-07 教学设计

  作为一无名无私奉献的教育工作者,时常需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。如何把教学设计做到重点突出呢?下面是小编帮大家整理的梯形的面积教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

  梯形的面积教学设计 篇1

  一、说教材

  1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

  2、教学目标:

  认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。

  能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,

  情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  3、教学重、难点:

  重点:使学生掌握梯形面积的计算公式。

  难点:理解梯形面积计算公式的推导过程。

  二、说教法与学法

  1、根据几何图形教学的特点,我采用了以下几点教法:

  ①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;

  ②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

  2、通过本节课的教学,使学生掌握一些基本的学法:

  ①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

  ②让学生学会自主发现问题,分析问题,解决问题的方法。

  三、说教学过程

  新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:

  (一)、创设情境,引出问题。

  1、课件出示“神七”发射实况

  2、谈话引出课题

  梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉

  (二)、自主探究,合作交流

  1、直接切入主题:对于梯形的面积你们打算怎样找到它的.计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

  〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉

  2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

  3、自主探究,合作学习

  学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉

  4、分小组展示汇报,教师深化点拔。

  教师板演推导过程。

  5、引导学生用字母表示公式:s=(a+b)×h÷2

  6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

  〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉

  (三)、学以致用,解决问题

  1、学习例3

  (1)、借助教具演示,理解“横截面”的含义。

  (2)、弄清渠口、渠底、渠深各是梯形的什么?

  (3)、学生尝试计算横截面积。

  〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

  (四)、应用深化,巩固练习:

  1、做一做:请两名学生板演。

  2、课件出示练习题。

  (通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)

  (五)、总结,反思体验

  回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。

  四、板书设计

  板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。

  梯形的面积教学设计 篇2

  教学内容:

  人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,

  教学目标:

  1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

  2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的.乐趣。

  教学重点:

  掌握梯形面积的计算公式,并会用公式解决实际问题。

  教学难点:

  理解梯形面积公式推导方法的多样化,体会转化的思想。

  考点分析:

  会用梯形面积公式解决实际问题。

  教学方法:

  游戏引入新知讲授巩固总结练习提高

  教学用具:

  课件、多组两个完全相同的梯形。

  教学过程:

  一、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  二、通过旧知迁移引出新课。

  教师:同学们还记得平行四边形和三角形的面积怎么求吗?

  1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

  2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

  3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

  三、揭示课题;

  根据学生的回答,引出新课,梯形的面积。

  板书课题--梯形的面积。

  四、新知探究

  1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  2、请同学们打开学具袋,看看里面的梯形有什么特点?

  梯形的面积教学设计 篇3

  今天我说课的内容是:

  一、说教材

  1、说教材的地位和作用

  《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

  2、说教学目标、重点、难点

  根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:

  知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。

  过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。

  情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

  教学重点:理解并掌握梯形面积计算公式,正确计算梯形的面积。

  教学难点:梯形面积计算方法的推导过程。

  二、说学生

  由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。

  三、说教学策略

  根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:

  1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

  2、采用“小组活动,合作探究的教学方法”。

  在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的`探究过程,利用学生的合作探究能力,引导学生自主学习。

  3、采用直观教学法。

  在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。

  通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。

  四、说教学实施过程

  基于上述认识与理解,我对梯形的面积教学流程作了如下设计:

  第一环节:创设情境,导入新课

  上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。

  第二环节:动手操作,探究新知

  新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。

  第三环节:合作探究,发散验证

  在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。

  这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到既突出“重点”,又化解“难点”的目的。

  第四环节:应用公式,解决问题

  数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:

  第一题:是判断题,加深学生对推导公式的印象。

  第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。

  第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。

  第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。

  第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。

  练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。

  第五环节:课堂回顾,总结收获

  成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。

  梯形的面积教学设计 篇4

  一、教学内容:

  五年级上册第88页《梯形的面积》

  二、教学目标:

  1.知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。

  2.过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。

  3.情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。

  三、教学重难点

  教学重点:

  探索并掌握梯形面积是本节课的重点

  教学难点:

  理解梯形面积计算公式的推导过程是本课的难点。

  四、教学过程:

  (一)、复习旧知

  出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段

  同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。

  学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。

  【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】

  (二)、探究新知

  联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:

  ⑴自选学具。(每个小组发如下梯形图片和探究表各一份)

  形状个数拼成的形状结论

  ……

  ⑵提出要求:

  ①做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。

  ②想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?

  ③说一说:你发现了什么,并尝试推导梯形的面积计算公式。

  ⑶小组合作,操作、观察、交流、填表,教师参与讨论。

  【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】

  ⑷全班交流汇报。(教师根据学生的回答借助演示)

  a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。

  b、沿梯形的对角线剪开分成两个三角形

  c、把一个梯形剪成一个平行四边形和一个三角形

  d、沿等腰梯形的一个顶点做高,剪拼成一个长方形

  e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形

  f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。

  ……

  对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。

  (其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)

  ⑸归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。

  梯形的面积=(上底+下底)×高÷2

  如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:

  S=(a+b)h÷2

  【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】

  (五)深化巩固

  1、尝试计算

  a、计算一个一般梯形的面积。

  b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:

  (1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

  (2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?

  借助模型和让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。

  【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】

  2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?

  【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】

  3、总结,反思体验

  回想这节课所学,说说自己有哪些得失?

  【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】

  【教后反思】:

  五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的.特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:

  突出体现了两个亮点:

  1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。

  2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。在上课时也显示出几点缺陷,

  (1)、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。

  (2)、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。

  (3)、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。以上种种说明我的教学理念还很滞后,有待于更新、学习。)

  梯形的面积教学设计 篇5

  教学目标:

  1、通过学习,学生理解、掌握梯形面积的计算公式,并会运用。

  2、学生在梯形面积计算公式的推导过程中,发展空间观念,领悟转化思想,感受事物之间是密切联系的。

  3、学生在探究中思考,在思考中发展,在发展中快乐,体验到数学是有趣的、有用的、是美的,激起学习数学的兴趣和自觉性。

  教学重难点:

  理解并掌握梯形面积的计算公式,并能运用公式解决简单的实际问题。

  让学生利用已有知识和学习方法自主探究,发现并掌握梯形的面积计算方法。

  教学片断实录:

  师:同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)

  你们知道这一处是什么区域吗?(课件点击闪动)

  生:这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。

  师:它是什么形?

  师:求这一区域的大小就是求。

  生:梯形的面积

  师:但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?

  师:同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。

  在动手操作之前,老师提出三点建议:

  (1)想想能把梯形转化成学过的什么图形。

  (2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。

  (3)填写好汇报单,比一比,哪个小组的动作快。

  明白了吗?开始吧!

  师:刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?

  汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?他的叙述严密吗?有补充吗?听到了吗?他的叙述多严密啊!老师喜欢你用的这个词(板书):完全相同,你能解释一下什么叫完全相同吗?

  你叙述的条理多清晰啊!语言真流畅!我们把掌声送给他!

  还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。

  长方形:这个方法也很好。

  正方形:正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?

  师:同学们,观察这些图形,无论长方形还是正方形,都是。再看,(移动图形)你发现什么了?

  你很善于观察和总结!

  过渡:看来,只要是两个完全相同的梯形,就能拼成一个。(板书)平行四边形的面积我们学过:(板书)

  然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。

  平行四边形的.底就是梯形的。,平形四边形的高就是,所以梯形的面积为什么除以2?(用笔画)

  刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?

  总结:同学们真爱动脑筋,(手势)想出了这么多不同的方法。但这些方法都有共同点。谁来说说?

  预设A:都用了转化的思想

  预设B:推导出的梯形面积公式都相同。

  是不是这样啊?那大家就一起把我们用转化的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?

  在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。

  梯形的面积教学设计 篇6

  教学目标

  1、通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。

  2、能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  教学重难点

  教学重点:探索并掌握梯形面积计算公式。

  教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。

  教学过程

  一、复习引入,知识铺垫

  计算下面各图形的面积:

  全班核对答案。

  教师:平行四边形、三角形的面积计算公式分别是什么?

  教师:它们之间有什么联系呢?

  因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。

  【设计意图】通过平行四边形、三角形的面积计算方法以及它们之间的联系,为学习新知做好方法上的准备。

  二、探究梯形面积的计算公式

  1、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  教师:你能用学过的方法推导出梯形的面积计算公式吗?

  2、动手操作。

  (1)选择合适的材料,进行操作。(同桌合作)

  (2)反馈交流。

  让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。

  预设:

  ①数方格;

  ②拼摆,转化成平行四边形;

  ③割,转化成两个三角形;

  ④割,转化成一个平行四边形和一个三角形;

  ⑤割,转化成长方形和两个三角形;

  ⑥割补法,转化成平行四边形。

  【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。

  3、公式推导。

  (1)教师:

  方法①的数方格的方法中渗透着割补法的思想,

  方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。

  先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?

  学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。

  学生边说,教师边课件演示。

  逐步完成板书:

  教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。

  (2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?

  学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。

  学生边说,教师边板书演示。

  教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。

  教师:这与前面推导出来的梯形面积计算公式是一样的。

  (3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的.上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。

  学生边说,教师边板书演示。

  其中的计算过程稍复杂,可配合教师讲解完成。

  教师:这和前面推导出来的结论是一样的。

  (4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?

  学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。

  学生发现两个三角形的底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。

  教师边板书演示。

  教师:接下来的推导过程和方法④是一样的。

  (5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。

  教师课件演示。

  教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)

  【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。

  三、学以致用

  1、出示教材第96页例3。

  例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2、练习,出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3、求面积,只列式不计算?

  4、求出这条水渠的横截面?

  5、有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?

  6、判断:

  1、两个面积相等的梯形可以拼成一个平行四

  边形( )。

  2、梯形面积是三角形面积的2倍( )。

  3、一个梯形有无数条高( )。

  4、如果梯形的面积是12平方厘米,两个完全一样的

  梯形拼成的平行四边形的面积是6平方厘米。( )

  5、一个梯形上下底的和是20米,高是8米,这个梯

  形的面积是80平方米。( )。

  【设计意图】因为学生第一次接触“横截面”,所以强调了对“横截面”的理解。从简到难,多层次对公式进行应用,在应用中加强对公式的理解。

  四、回顾反思

  教师:回顾本节课所学的内容,你最大的收获是什么?

  【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。

  五、布置作业

  完成教材第97页第1题到第5题。

  梯形的面积教学设计 篇7

  一.教学目标

  1.在实际情境中,认识计算梯形面积的必要性。

  2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

  3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

  4.通过小组合作学习,培养学生合作学习的能力。

  二.教材分析

  “梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

  三.教学设计

  (一)复习准备

  1.复习旧知,铺垫引导

  师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

  生:转化成平行四边形。

  (在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

  (点评:通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。)

  师:同学们对前面的知识掌握的真不错。

  (二)新知探索

  (一)呈现实际情境,感受计算梯形面积的必要性

  师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

  师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

  师:你认为我们该从哪儿入手研究呢?

  (学生思考片刻可能会回答:可以先转化为学过的图形)

  师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

  (点评:启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望,又使学生明确了探索目标与方向。)

  (二)提供材料,自主探究图形的转化过程

  1、提出小组合作的要求

  师:下面我们共同来研究梯形的`面积计算方法。小组全作的要求如下:

  a。利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

  b。把你的方法与小组成员进行交流,共同验证。

  C.选择合适的方法交流汇报。

  2.自主探究,合作学习

  (学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

  3.全班汇报交流

  师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

  生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

  (学生边动手演示,边说转化过程,见下图。)

  生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

  生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

  (三)探索、归纳梯形的面积计算公式

  师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

  生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

  生:梯形的面积是所拼平行四边形面积的一半。

  生:梯形的面积=(上底+下底)×高÷2

  (教师板书梯形面积计算公式)

  师:一个梯形的面积为什么要除以2?

  生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

  师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

  师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

  板书:S=(a+b)h÷2

  (学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

  (点评:这部分内容是这一节课的重点,也是难点。在激发起了学生的探究欲望后,采用了小组合作学习这种方式,让他们主动探究、大胆猜测、积极验证的教学方法。使学生在数学学习活动中相互合作,主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。)

  (三)联系实际,巩固运用

  1.试一试

  引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

  (1)出示篮球场的罚球区图形,请计算出罚球区的面积。

  (2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

  2.练一练第1、2、3题,让学生独立完成。

  3.思考题

  我们经常见到圆木,钢管等堆成下图的形状(了示课本第28页第4题),求图中圆木的总根数,你有几种解答方法?

  (四)课堂小结

  通过今天课堂上的学习,谈谈你的收获。

  梯形的面积教学设计 篇8

  教学目标:

  1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

  2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

  3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

  教学重点:

  梯形面积计算公式的推导和运用。

  教学难点:

  理解梯形面积公式的推导过程。

  教学过程:

  一、导入新课

  1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

  2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

  3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

  二、新课展开

  第一层次,推导公式

  (1)猜想:

  让学生先猜测一下梯形的面积可能和哪些量相关。

  (2)操作学具

  ①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

  ②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

  ③指名学生操作演示。

  学生预设:

  方法一:把两个完全一样的梯形拼成一个平行四边形;

  方法二:把一个梯形分成两个三角形;

  方法三:把一个梯形分成一个平行四边形和一个三角形。

  ……

  师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

  ④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

  (2)观察思考

  ①教师提出问题引导学生观察。

  a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

  b.每个梯形的面积与拼成的'平形四边形的面积有什么关系?

  (3)反馈交流,推导公式。

  ①学生回答上述问题。

  ②师生共同总结梯形面积的计算公式。

  板书:梯形的面积=(上底+下底)×高÷2

  问:梯形的面积公式中“(上底+下底)×高”求的是什么?

  为什么要除以2?

  ③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

  方法一:梯形的面积=上底×高÷2+下底×高÷2

  =(上底+下底)×高÷2

  方法二:梯形的面积=平行四边形面积+三角形面积

  =上底×高+三角形的底×高÷2

  =(2个梯形上底+三角形底)×高÷2

  =(梯形上底+梯形下底)×高÷2

  ④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

  学生回答后,教师板书:“S=(a+b)h÷2”。

  第二层次,公式应用。

  (1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

  (2)学生尝试解答。

  (3)展示台出示例题的解答,反馈矫正。

  (4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

  三、巩固练习

  (1)完成练习十七第1、2和3题。

  (2)讨论完成练习十七第4和6题。

  四、全课小结。(略)

  板书设计:

  梯形的面积计算

  平行四边形的面积=底×高例3S=(a+b)h÷2

  梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

  S=(a+b)h÷2=156×135÷2

  =10530(平方米)

  梯形的面积教学设计 篇9

  一、学情分析

  学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

  因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

  二、教材分析

  "梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的`数学"再创造"打下了良好的基础。

  三、教学目标设计

  1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

  2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

  3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

  四、教学重点难点

  教学重点

  1.理解并掌握梯形的面积计算公式。

  2.运用梯形的面积计算公式解决问题。

  教学难点

  梯形面积公式的推导过程。

  五、教学策略设计

  我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。

  六、教学过程设计

  教学环节一

  一、汇报预习的成果

  (预习单)

  1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

  2、对于梯形,你们已经知道了什么?

  3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?

  4、如何推导梯形的面积计算公式?谈谈你的想法。

  学生汇报前三个:

  生1:我发现任何梯形都可以分成两个三角形。

  生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

  师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。

  (揭示课题)

  设计意图

  引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。

  教学环节二

  二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。

  师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。

  (学生分组交流。教师深入学生中倾听,并作必要的启发和引导)

  生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?

  生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?

  生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

  设计意图

  交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。

  教学环节

  三、应用知识,自主探究

  师:同学们是不是都有自己的想法了,想不想马上动手试试?

  (学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)

  教学环节四

  设计意图

  对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。

  四、汇报展示

  师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

  生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。

  师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

  设计意图:

  引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

  教学环节

  五、在实践应用中拓展、延续数学知识的"再创造"。

  师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

  (出示基本练习)测量数据,并计算出这些梯形的面积。

  设计意图:

  学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

  六、作业设计

  师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。

  (学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)

  实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

  七、板书设计

  梯形的面积

  梯形的面积=(上底+下底)×高÷2转化

  S梯形=(a+b)×h÷2(学生的方法展示)

  八、预设效果

  本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

  九、课外知识的准备

  了解多种转化的方法。

  梯形的面积教学设计 篇10

  教学目的:

  1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

  2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重点:

  正确地进行梯形面积的计算。

  教学难点:

  梯形面积公式的推导。

  教学准备:

  投影、小黑板、若干个梯形图片(其中有两个完全一样的。

  教学过程:

  一、导入新课

  1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

  2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

  3、创设情境:

  投影显示:

  启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

  二、新课展开

  1、操作探索

  ⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

  提问:你拼成了什么图形,怎样拼的?演示一遍。

  ⑵看一看,观察拼成的平行四边形。

  提问:你发现拼成的平行四边形和梯形之间的关系了吗?

  出示小黑板:

  拼成的平行四边形的底等于( ),平行四边形的高等于( ),每个梯形的面积等于拼成的平行四边形面积的( )。

  ⑶想一想:梯形的面积怎样计算?

  学生讨论,指名回答,师板书。

  梯形的面积=(上底+下底)×高÷2

  师:(上底+下底)表示什么?为什么要除以2?

  ⑷做一做:计算“前面出示的梯形”的面积。

  2、扩散思维

  师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

  生1:做对角线,把梯形分割成两个三角形,如下图⑴:

  生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

  生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

  师:同学们真聪明,想出了好多种方法,推导出了梯形的`面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

  3、抽象概括

  师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

  生:s=(a+b)h÷2

  4、反馈练习

  完成课本p81做一做(一人板演)

  三、应用深化

  出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

  解释:举例说明“横截面”的含义。学生尝试计算:

  (2.8+1.4)×1.2÷2

  =4.2×1.2÷2

  =5.04÷2

  =2.52(平方米)

  答:它的横截面的面积是2.52平方米。

  2、反馈练习:完成p82第1题

  四、巩固练习:p82第2题

  五、全课小结

  六、作业:p82第3、4题

  教学后记:

  实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

  在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

  梯形的面积教学设计 篇11

  学习目标:

  1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

  2、培养观察、推理、归纳能力,体会转化思想的价值。

  3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

  学习重点:

  探索并掌握梯形的面积计算方法。

  学习难点:

  理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。

  学习准备:

  剪下书后的梯形

  学习过程:

  一、先学探究

  ■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

  1、按算式画出相应的图形,说说自己是怎么想的?

  算式:4×34×3÷2

  2、复习梯形的有关知识:举一梯形。

  说说梯形的基本特征及各部分名称。

  ■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。

  二.交流共享

  ■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。

  【板块一】学习例6:

  (1)出示例6:

  用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的两个梯形有什么特点?

  测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

  (3)如何计算一个梯形的面积?

  从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼

  成一个

  这个平行四边形的底等于

  这个平行四边形的.高等于

  因为每个梯形的面积等于拼成的平行四边形面积的

  所以梯形的面积=

  (4)用字母表示梯形面积公式:

  三、反馈完善

  1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。

  2、完成P15练一练

  一个梯形的面积与整个平行四边形的面积有什么关系?

  3、P5动手做

  四、总结回顾:

  通过今天的学习,你有什么收获?想要提醒大家注意什么?

  平行四边形,学习目标,计算方法,自信心,教学

  梯形的面积教学设计 篇12

  【教学目标】

  1.在实际情境中,认识计算梯形面积的必要性。

  2.在自主探索活动中,经历推导梯形面积公式的过程。

  3.能运用梯形面积的计算公式,解决相应的实际问题。

  【教学重、难点】

  教学重点:在自主探索中推导出梯形面积公式。

  教学难点:能理解和运用梯形面积公式。

  【教学准备】

  尺子、两个完全相同的梯形纸片、ppt课件。

  【教学过程】

  一、创设情境,引出问题。

  1.出示堤坝横截面,感受求梯形面积的必要性。

  说一说:如何求出图中梯形的面积?

  预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。

  二、自主探索,解决问题。

  1.把梯形转化成学过的图形,并比较转化前后图形的面积。

  (1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。

  发现:一个梯形的面积是拼成的平行四边形面积的一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。

  推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

  预设二:可以把梯形通过“割补”转化成一个平行四边形。

  发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。

  推导:由“平行四边形的'面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

  2.怎样计算梯形的面积?

  (1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。

  (2)用字母表示梯形面积公式“S=(a+b)×h÷2”

  (3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=2000m?”

  3.师生小结。

  三、练习应用,巩固提升。

  1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。

  2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。

  3.先测量,再计算下列图形的面积,并与同伴交流。

  四、全课总结,强化延伸。

  这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。

  梯形的面积教学设计 篇13

  教学目标

  1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

  2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

  3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

  重点难点

  重点:掌握梯形面积的计算公式。

  难点:理解梯形面积公式的推导过程。

  教具学具

  多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

  教学过程

  一、导入

  1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

  生:平行四边形的面积=底×高,也就是S=ah。

  三角形的面积=底×高÷2,也就是S=ah÷2。

  2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

  3、师:根据前面的`学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  二、探究

  1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

  生:各种梯形,每种两个。

  提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

  (2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

  (3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

  2、学生先独立思考,后小组交流。

  教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

  3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

  各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

  三、汇报

  四、总结

  师:学完这节课,你收获了什么呢?跟大家说说吧!

  学生讨论。

  老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

【梯形的面积教学设计】相关文章:

梯形的面积教学设计04-21

《梯形的面积》教学设计06-15

《梯形的面积》教学设计04-25

梯形面积计算教学设计04-09

小学数学梯形的面积教学设计11-25

梯形的面积教学设计19篇09-01

梯形的面积教学设计(15篇)04-21

《梯形的面积》教学设计15篇04-25

梯形的面积教学设计(精选15篇)05-20

梯形的面积教学设计13篇06-08