初中数学教学设计与反思

2024-04-19 教学设计

  作为一名人民教师,通常会被要求编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的初中数学教学设计与反思,仅供参考,欢迎大家阅读。

  初中数学教学设计与反思 1

  教材分析:

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

  学情分析:

  1.学生已学习用求根公式法解一元二次方程。

  2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

  3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

  教学目标:

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

  2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

  3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

  教学重难点:

  1、重点:一元二次方程根与系数的关系。

  2、难点:让学生从具体方程的`根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  教学过程:

  板书设计:

  一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。

  问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?

  ①二次项系数a是否为零,决定着方程是否为二次方程;

  ②当a≠0时,b=0,a、c异号,方程两根互为相反数;

  ③当a≠0时,△=b-4ac可判定根的情况;

  ④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。

  ⑤当a≠0,c=0时,方程必有一根为0。

  学生学习活动评价设计:

  本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

  教学反思:

  1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

  2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力

  3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

  4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

  初中数学教学设计与反思 2

  教学目标:

  1、知识与技能:

  (1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

  (2)能熟练进行有理数的减法法则。

  2、过程与方法

  通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

  重点、难点

  1、重点:有理数减法法则及其应用。

  2、难点:有理数减法法则的应用符号的改变。

  教学过程:

  一、创设情景,导入新课

  1、有理数加法运算是怎样做的?

  (-5)+3= —3+(—5)=

  —3+(+5)=

  2、-(-2)= -[-(+23)]=,+[-(-2)]=

  3、2012的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?

  导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)

  二、合作交流,解读探究

  1(-2)-(-10)=8=(-2)+8

  2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?

  3、通过以上列式,你能发现减法运算与加法运算的关系吗?

  (学生分组讨论,大胆发言,总结有理数的减法法则)

  减去一个数等于加上这个数的.相反数

  教师提问、启发:

  (1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?

  (2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?

  (3)你能用字母表示有理数减法法则吗?

  三、应用迁移,巩固提高

  1、P.24例1 计算:

  (1) 0-(-3.18)(2)(-10)-(-6)(3)-

  解:(1)0-(-3.18)=0+3.18=3.18

  (2)(-10)-(-6)=(-10)+6=-4

  (3)-=+=1

  2、课内练习:P.241、2、3

  3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。

  四、总结反思

  (1) 有理数减法法则:减去一个数,等于加上这个数的相反数。

  (2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。

  五、作业

  P.27习题1.4A组1、2、5、6

  备选题

  填空:比2小-9的数是 。

  а比а+2小 。

  若а小于0,е是非负数,则2а-3е 0。

  初中数学教学设计与反思 3

  一.教学目标

  1.知识与技能

  (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

  (2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

  2.数学思考

  通过观察,比较,归纳等得出有理数加法法则。

  3.解决问题

  能运用有理数加法法则解决实际问题。

  4.情感与态度

  认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

  5.重点

  会用有理数加法法则进行运算.

  6.难点

  异号两数相加的法则.

  二.教材分析

  “有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

  三.学校与学生情况分析

  冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

  四.教学过程

  (一)问题与情境

  我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

  4+(-2),黄队的净胜球为1+(-1)。

  这里用到正数与负数的加法。

  (二)、师生共同探究有理数加法法则

  前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

  两个有理数相加,有多少种不同的情形?

  为此,我们来看一个大家熟悉的实际问题:

  足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

  (1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

  (+3)+(+1)=+4.

  (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

  (-2)+(-1)=-3.

  现在,请同学们说出其他可能的情形.

  答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

  (+3)+(-2)=+1;

  上半场输了3球,下半场赢了2球,全场输了1球,也就是

  (-3)+(+2)=-1;

  上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

  (+3)+0=+3;

  上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

  (-2)+0=-2;

  上半场打平,下半场也打平,全场仍是平局,也就是

  0+0=0.

  上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

  这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数.

  (三)、应用举例 变式练习

  例1 口答下列算式的结果

  (1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

  (5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

  学生逐题口答后,师生共同得出

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  例2(教科书的例1)

  解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

  =-(3+9) (和取负号,把绝对值相加)

  =-12.

  (2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

  =-(4.7-3.9) (和取负号,把大的.绝对值减去小的绝对值)

  =-0.8

  例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

  下面请同学们计算下列各题以及教科书第23页练习第1与第2题

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

  (四)、小结

  1.本节课你学到了什么?

  2.本节课你有什么感受?(由学生自己小结)

  (五)练习设计

  1.计算:

  (1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);

  (5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.

  2.计算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;

  (4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

  4.用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  五.教学反思

  “有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.

  现在,试比较这两类教学设计的得失利弊.

  第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.

  第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的`一些基本方法.

  这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

  六.点评

  潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。

  初中数学教学设计与反思 4

  一.学生情况分析

  学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。

  二.教学任务分析

  教学目标:

  知识目标:

  1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

  2.掌握正方形的性质定理1和性质定理2。

  3.正确运用正方形的性质解题。

  能力目标:

  1.通过四边形的从属关系渗透集合思想。

  2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。

  情感与价值观

  1.通过理解四种四边形内在联系,培养学生辩证观点

  教学重点:正方形的性质的应用.

  教学难点:正方形的性质的应用.

  三、教学过程设计

  课前准备

  教具准备: 一个活动的平行四边形木框、白纸、剪刀.

  学生用具:白纸、剪刀

  教学过程设计分成四分环节:

  第一环节:巧设情境问题,引入课题

  第二环节:讲授新课

  第三环节:新课小结

  第四环节:布置作业

  第一环节 巧设情境问题,引入课题

  进入正题,提出本节课的研究主题正方形

  第二环节 讲授新课

  主要环节

  (1)呈现两种通过不同途径得到正方形的过程,给正方形下定义

  (2)讨论正方形的性质

  (3)通过练习加强对正方形性质的理解

  (4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。

  (5)寻找正方形的判定方法

  目的:

  1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的'基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。

  2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。

  大致教学过程

  呈现一个平行四边形变成正方形的全过程.(演示)

  由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.

  这个变化过程,可用如下图表示

  由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.

  这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.

  这个变化过程,也可用图表示

  你能根据上面的变化过程,给正方形下定义吗?

  一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形.

  由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.

  因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质.

  正方形的`性质:

  边:对边平行、四边相等

  角:四个角都是直角

  对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.

  正方形是轴对称图形吗?如是,它有几条对称轴?

  正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线.

  例题

  [例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数.

  分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.

  解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45

  拿出准备好的剪刀、白纸来做一做

  将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)

  只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.

  正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?

  正方形、矩形、菱形及平行四边形四者之间有什么关系呢?

  它们的包含关系如图:

  此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?

  先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形.

  由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断.

  第三环节 课堂练习

  教材 随堂练习1,2

  第四环节 课时小结

  正方形的定义:一组邻边相等的矩形.

  正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)

  第五环节 课后作业

  课本习题4.7 1,2,3.

  四.教学设计反思

  在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。

  为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。

  初中数学教学设计与反思 5

  一、学生起点分析

  学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

  反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

  可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

  二、学习任务分析

  本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

  知识与技能目标

  1.理解勾股定理逆定理的具体内容及勾股数的概念;

  2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

  过程与方法目标

  1.经历一般规律的探索过程,发展学生的抽象思维能力;

  2.经历从实验到验证的过程,发展学生的数学归纳能力。

  情感与态度目标

  1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

  2.在探索过程中体验成功的喜悦,树立学习的自信心。

  教学重点

  理解勾股定理逆定理的具体内容。

  三、教法学法

  1.教学方法:实验猜想归纳论证

  本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

  但数学思维严谨的`同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,通过以旧引新,顺势教学过程;

  (3)利用探索,研究手段,通过思维深入,领悟教学过程。

  2.课前准备

  教具:教材、电脑、多媒体课件。

  学具:教材、笔记本、课堂练习本、文具。

  四、教学过程设计

  本节课设计了七个环节。

  第一环节:情境引入;

  第二环节:合作探究;

  第三环节:小试牛刀;

  第四环节:登高望远;

  第五环节:巩固提高;

  第六环节:交流小结;

  第七环节:布置作业。

  第一环节:情境引入

  内容:

  情境:

  1.直角三角形中,三边长度之间满足什么样的关系?

  2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

  意图:

  通过情境的创设引入新课,激发学生探究热情。

  效果:

  从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

  第二环节:合作探究

  内容1:探究

  下面有三组数,分别是一个三角形的三边长

  ①5,12,13;

  ②7,24,25;

  ③8,15,17;并回答这样两个问题:

  1.这三组数都满足吗?

  2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

  意图:

  通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  效果:

  经过学生充分讨论后,汇总各小组实验结果发现:

  ①5,12,13满足 ,可以构成直角三角形;

  ②7,24,25满足 ,可以构成直角三角形;

  ③8,15,17满足 ,可以构成直角三角形。

  从上面的分组实验很容易得出如下结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  内容2:说理

  提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

  意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形 满足 的三个正整数,称为勾股数。

  注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

  活动3:反思总结

  提问:

  1.同学们还能找出哪些勾股数呢?

  2.今天的结论与前面学习勾股定理有哪些异同呢?

  3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

  4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

  意图:进一步让学生认识该定理与勾股定理之间的关系

  第三环节:小试牛刀

  内容:

  1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

  ①9,12,15;

  ②15,36,39;

  ③12,35,36;

  ④12,18,22

  解答:①②

  2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

  A 250 B 150 C 200 D 不能确定

  解答:B

  3.将直角三角形的三边扩大相同的倍数后, (图1)

  得到的三角形是( )

  A 直角三角形 B 锐角三角形

  C 钝角三角形 D 不能确定

  解答:A

  意图:

  通过练习,加强对勾股定理及勾股定理逆定理认识及应用

  效果

  每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

  第四环节:登高望远

  内容:

  1.一个零件的形状,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸,这个零件符合要求吗?

  解答:符合要求

  2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

  解答:由题意画出相应的图形

  AB=240海里,BC=70海里,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船转弯后,是沿正西方向航行的`。

  意图:

  利用勾股定理逆定理解决实际问题,进一步巩固该定理。

  效果:

  学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

  第五环节:巩固提高

  内容:

  1.在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

  解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

  2.哪些是直角三角形,哪些不是,说说你的理由?

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意图:

  第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

  效果:

  学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

  第六环节:交流小结

  内容:

  师生相互交流总结出:

  1.今天所学内容

  ①会利用三角形三边数量关系 判断一个三角形是直角三角形;

  ②满足 的三个正整数,称为勾股数;

  2.从今天所学内容及所作练习中总结出的经验与方法:

  ①数学是源于生活又服务于生活的;

  ②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;

  ③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

  意图:

  鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

  效果:

  学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

  第七环节:布置作业

  课本习题1.4第1,2,4题。

  五、教学反思:

  1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

  2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

  4.注重对学习新知理解应用偏困难的学生的进一步关注。

  5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

  由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

  附:板书设计

  能得到直角三角形吗

  情景引入 小试牛刀: 登高望远

  初中数学教学设计与反思 6

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:

  引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:

  大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:

  (1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)

  方法1:把五边形分成三个三角形,3个180的和是540。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

  方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

  (二)引申思考,培养创新

  师:通过前面的讨论,你能知道多边形内角和吗?

  活动三:探究任意多边形的内角和公式。

  思考:

  (1)多边形内角和与三角形内角和的关系?

  (2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

  学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的.和。发现2:多边形的边数增加1,内角和增加180。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)·180。

  (三)实际应用,优势互补

  1、口答:

  (1)七边形内角和()

  (2)九边形内角和()

  (3)十边形内角和()

  2、抢答:

  (1)一个多边形的内角和等于1260,它是几边形?

  (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

  (四)概括存储

  学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题

  (五)作业:练习册第93页1、2、3

  八、教学反思:

  1、教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

  2、学的转变

  学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

  初中数学教学设计与反思 7

  教学目的

  1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

  2、使学生能了解实数绝对值的意义。

  3、使学生能了解数轴上的点具有一一对应关系。

  4、由实数的分类,渗透数学分类的思想。

  5、由实数与数轴的一一对应,渗透数形结合的思想。

  教学分析

  重点:无理数及实数的概念。

  难点:有理数与无理数的区别,点与数的一一对应。

  教学过程

  一、复习

  1、什么叫有理数?

  2、有理数可以如何分类?

  (按定义分与按大小分。)

  二、新授

  1、无理数定义:无限不循环小数叫做无理数。

  判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

  2、实数的定义:有理数与无理数统称为实数。

  3、按课本中列表,将各数间的联系介绍一下。

  除了按定义还能按大小写出列表。

  4、实数的.相反数:

  5、实数的绝对值:

  6、实数的运算

  讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判断题:

  (1)任何实数的偶次幂是正实数。( )

  (2)在实数范围内,若| x|=|y|则x=y。( )

  (3)0是最小的.实数。( )

  (4)0是绝对值最小的实数。( )

  解:略

  三、练习

  P148 练习:3、4、5、6。

  四、小结

  1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

  2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

  五、作业

  1、P150 习题A:3。

  2、基础训练:同步练习1。

  初中数学教学设计与反思 8

  一、指导思想

  教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

  二、检查反馈

  本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

  特点:

  1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的`指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

  2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

  3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

  4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

  不足:

  1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

  2、个别教师教案过于简单。

  作业方面的特点与不足

  特点:

  1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

  2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

  不足:

  1、对于学生书写的工整性,还需加强教育。

  2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

  初中数学教学设计与反思 9

  一、教学设计

  1. 教学目标

  知识与技能:让学生掌握初中数学的基本概念、定理和公式,并能够应用到实际问题中。

  过程与方法:通过探究式学习、合作学习等方式,培养学生的思维能力、创新能力和解决问题的能力。

  情感态度与价值观:激发学生对数学的兴趣和热爱,培养他们的科学精神和探索精神。

  2. 教学内容

  以初中数学教材为基础,结合学生的实际情况和兴趣爱好,选择适当的教学内容。例如,可以选择与日常生活密切相关的数学问题,或者具有挑战性的数学难题,以激发学生的学习兴趣。

  3. 教学方法

  采用多种教学方法相结合,如讲授法、讨论法、实验法等。通过引导学生自主思考、合作交流,让他们在探究中发现问题、解决问题,从而提高他们的数学素养。

  4. 教学过程

  (1)导入新课:通过生活实例或趣味问题,激发学生的学习兴趣,引出本节课的主题。

  (2)知识讲解:系统讲解数学概念、定理和公式,注重理论与实践相结合,让学生理解数学知识的本质和应用。

  (3)探究实践:设计具有层次性和挑战性的数学问题,引导学生自主思考、合作交流,培养他们的探究能力和创新精神。

  (4)总结归纳:对本节课的知识进行梳理和归纳,强调重点难点,帮助学生巩固所学知识。

  (5)作业布置:布置适量的课后作业,让学生巩固所学知识,提高数学应用能力。

  二、教学反思

  1. 教学效果

  通过本节课的教学,大部分学生能够掌握所学的数学概念、定理和公式,并能够应用到实际问题中。同时,学生的思维能力、创新能力和解决问题的能力也得到了提高。但是,仍有部分学生在理解和掌握上存在一定的困难,需要进一步加强辅导和指导。

  2. 教学问题

  在教学过程中,我发现一些问题需要改进。首先,在教学方法上,我应更加注重学生的主体地位,多引导学生自主思考和探究。其次,在教学内容上,我应更加注重与学生的实际生活相联系,让数学知识更加贴近学生的实际需求。最后,在教学评价上,我应更加注重学生的全面发展,关注学生的个体差异,采用不同的评价方式和方法。

  3. 教学改进

  针对以上问题,我将采取以下措施进行改进。首先,加强与学生的.互动和交流,多听取学生的意见和建议,了解他们的学习需求和困难。其次,注重培养学生的自主学习能力和合作精神,让他们在探究中发现问题、解决问题。最后,注重学生的个体差异,采用不同的教学方法和评价方式,让每个学生都能够在数学学习中取得进步。

  总之,通过本次初中数学教学设计与反思,我深刻认识到数学教学的重要性和挑战性。我将继续努力探索和实践,不断提高自己的教学水平和能力,为学生的全面发展贡献自己的力量。

  初中数学教学设计与反思 10

  一、教学设计

  1. 教学目标

  知识与技能:掌握初中数学的基本概念,如代数、几何、概率与统计等,能够运用所学知识解决实际问题。

  过程与方法:通过引导学生自主探究、合作学习,培养学生分析问题和解决问题的能力,提高学生的数学思维和创新能力。

  情感、态度与价值观:激发学生对数学的兴趣,培养学生严谨、认真的学习态度,提高学生的数学素养。

  2. 教学内容与方法

  教学内容:以初中数学教材为基础,结合生活实例,设计一系列有趣且具有挑战性的数学问题。

  教学方法:采用启发式教学、探究式学习、合作学习等多种教学方法,让学生在轻松愉快的氛围中学习数学。

  3. 教学过程

  (1)导入新课:通过生活中的数学现象或趣味问题,吸引学生的注意力,激发学生的学习兴趣。

  (2)自主探究:引导学生独立思考,自主探究数学问题,培养学生的自主学习能力。

  (3)合作学习:组织学生进行小组讨论,分享彼此的解题思路和方法,培养学生的合作意识和沟通能力。

  (4)总结归纳:教师根据学生的讨论情况进行总结归纳,强调重点难点,帮助学生巩固所学知识。

  (5)拓展应用:设计一些与生活相关的数学问题,让学生运用所学知识解决实际问题,培养学生的应用意识和实践能力。

  二、教学反思

  1. 教学优点

  (1)注重培养学生的数学思维和创新能力,通过引导学生自主探究和合作学习,使学生在解决问题的过程中不断提高自己的数学素养。

  (2)教学内容丰富有趣,能够激发学生的`学习兴趣,让学生在轻松愉快的氛围中学习数学。

  (3)注重培养学生的应用意识和实践能力,通过拓展应用环节,让学生将所学知识运用到实际生活中。

  2. 教学不足

  (1)部分学生在自主探究和合作学习中表现出较大的依赖性,缺乏独立思考的能力,需要教师在今后的教学中加强引导。

  (2)在拓展应用环节,部分学生的应用能力有待提高,教师需要提供更多与生活相关的数学问题,加强学生的实践训练。

  (3)在教学过程中,教师需要更加关注学生的个体差异,因材施教,确保每个学生都能在数学教学中得到充分的发展。

  针对以上不足,我将在今后的教学中加以改进,努力提高自己的教学水平,为学生的数学学习创造更好的条件。同时,我也会继续反思自己的教学实践,总结经验教训,不断提高自己的教育教学能力。

  • 相关推荐

【初中数学教学设计与反思】相关文章:

初中数学教学设计03-24

数学初中教学设计02-21

数学初中教学设计02-21

初中数学教学反思05-21

初中数学教学的反思06-05

初中数学教学反思06-20

初中的数学教学反思09-27

初中数学教学反思12-12

初中数学的教学反思10-14

初中的数学教学反思01-14