作为一名为他人授业解惑的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以促进我们快速成长,使教学工作更加科学化。一份好的教学设计是什么样子的呢?以下是小编收集整理的正弦教学设计,欢迎大家分享。
正弦教学设计1
教材分析这是高三一轮复习,内容是必修5第一章解三角形。本章内容准备复习两课时。本节课是第一课时。标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形.(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。本章内容与三角函数、向量联系密切。
作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。
学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
教学目标知识目标:
(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。
(2)学生学会分析问题,合理选用定理解决三角形综合问题。
能力目标:
培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。
情感目标:
通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。
教学方法探究式教学、讲练结合
重点难点
1、正、余弦定理的对于解解三角形的合理选择;
2、正、余弦定理与三角形的有关性质的综合运用。
教学策略1、重视多种教学方法有效整合;
2、重视提出问题、解决问题策略的指导。
3、重视加强前后知识的密切联系。
4、重视加强数学实践能力的培养。
5、注意避免过于繁琐的形式化训练
6、教学过程体现“实践→认识→实践”。
设计意图:
学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:
⑴重视教学各环节的合理安排:
在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。
⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。
⑶重视提出问题、解决问题策略的指导。
正弦教学设计2
一、教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的`,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、教学重点与难点
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生
主体下给于适当的提示和指导。
六、复习引入:
1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?
2.在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?
结论:
证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
《正弦定理》教学反思
本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法.具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
1.在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。
2.在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段.利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象.
3.由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。
正弦教学设计3
学习目标:
1、理解锐角正弦的意义,并会求锐角的正弦值;
2、掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;
3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;
学习重点:
理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.
学习难点:
当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。
导学过程:
一、自学提纲:
1.在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB
2.在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC
二、创设情景,提出问题:利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)
三、自主学习:
自主阅读课本74页中的问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数30°,为使出水口的高度为35m,那么需要准备多长的水管?
思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为am,那么需要准备多长的水管?。
结论:直角三角形中,30°角的对边与斜边的比值。
思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?
结论:直角三角形中,45°角的对边与斜边的比值。
四、教师点拨:
从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于1/2,是个固定值;当∠A=45°时,∠A的对边与斜边的比都等于√2/2,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?
探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=a,那么它们的对边与斜边的比有什么关系.你能解释一下吗?
因为∠C=∠C′,∠A=∠A′,
所以△ABC∽A′B′C′
所以BC/ B′C′=AB/ A′B′
所以根据比例的基本性质可以得到BC/ AB= B′C/ A′B′
结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比。
正弦函数概念:
规定:在Rt△ABC中,∠C=90°,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c。
在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,
记作sinA,即sinA=BC/ AB
例如,当∠A=30°时,我们有sinA=sin30°= 。
当∠A=45°时,我们有sinA=sin45°= 。
五、合作交流,自主展示:
学生阅读课本例1如图,在Rt△ABC中,∠C=90°,根据图中数据,求sinA和sinB的值.
小组成员交流,扫除障碍。
随堂练习
1:课本第77页练习。
2、判断对错(学生口答)
(1)若锐角∠A=∠B,则sinA=sinB()
(2)sin60°=sin30°+sin30°()
3、将Rt△ABC各边扩大100倍,则sinA的值()
A.扩大100倍B.缩小100倍C.不变D.不确定
4、平面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求sin∠1的值。
5、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的长。
五、课堂小结:
1、通过本节课的学习,你学会了哪些知识;
2、通过本节课的学习,你最大的体验是什么;
3、通过本节课的学习,你掌握了哪些学习数学的方法?
4、 sinA能为负吗?
5、你能比较sin45°和sin30°的大小吗?
六、自主拓展(提高升华)
1、必做题:课本习题28.1第1、2、题;
(只做与正弦函数有关的部分)
2、选做题:已知:在Rt△ABC中,∠C=90°,sinA=1/3,周长为60,求:斜边AB的长.
【正弦教学设计】相关文章:
3.正弦定理教学反思