圆的面积教学设计

2023-07-19 教学设计

  作为一位优秀的人民教师,有必要进行细致的教学设计准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计应该怎么写才好呢?下面是小编收集整理的圆的面积教学设计(通用5篇),仅供参考,希望能够帮助到大家。

  圆的面积教学设计1

  目标预设:

  1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

  教学过程:

  一、引导估计,初步感知。

  1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

  2、估计圆面积大小与半径的关系。

  师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

  二、动手操作,共同探索。

  1、引发转化,形成方案。

  (1)我们如何推导三角形,平行四边形,梯形的面积公式的?

  (2)准备如何去推导圆的面积?

  2、动手操作,共同探究

  (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

  (2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

  (3)比较:与刚才老师拼成的图形有何不同?

  (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

  如果一直这样分下去,拼成的图形会怎么样?

  3、引导比较,推导公式。

  圆与拼成的长方形之间有何联系?

  引导学生从长方形的面积,长宽三个角度去思考。

  根据学生回答,相机板书。

  长方形的面积=长×宽

  ↓↓↓

  圆的面积=∏rr

  =∏r2

  追问:课始我们的估算正确吗?

  求圆的面积一般需要知道什么条件?

  三、应用公式,解决问题

  1、基本训练,练练应用公式,求圆的面积。

  2、解决问题

  (1)出示例9,引导学生理解题意。

  要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

  (2)学生计算

  (3)交流,突出5平方的计算

  四、巩固练习

  1、练习十九1求课始出示的光盘的面积

  2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

  五、这节课你有什么收获?你认为重点的

  地方有哪些?

  引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

  六、课堂作业

  补充习题51页2、3、4题

  拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

  圆的面积是多少平方厘米?

  反思:

  1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的'掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

  2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

  3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

  圆的面积教学设计2

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的`求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

  圆的面积教学设计3

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  【教学目标】:

  1.认知目标

  使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

  2.过程与方法目标

  经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3.情感目标

  引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。

  【教学难点】:理解圆的面积计算公式的推导。

  【教学准备】:相应;圆的面积演示教具

  【教学过程】

  一、情境导入

  出示场景——《马儿的困惑》

  师:同学们,你们知道马儿吃草的范围是一个什么图形吗?

  生:是一个圆形。

  师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?

  生:圆的面积。

  师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

  [设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

  二、探究合作,推导圆面积公式

  1.渗透“转化”的数学思想和方法。

  师:关于圆的面积你想了解什么?

  (什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)

  我们先来回忆一下平行四边形的面积是怎样推导出来?

  生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

  生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的`图形。这样有什么好处呢?

  生:这样就把一个不懂的问题转化成我们可以解决的问题。

  师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

  师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

  2.演示揭疑。

  师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

  师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。

  师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

  [设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]

  3.学生合作探究,推导公式。

  (1)讨论探究,出示提示语。

  师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

  ①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

  ②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

  ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

  师:你们明白要求了吗?(明白)好,开始吧。

  学生汇报结果,师随机板书。

  同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

  (2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

  (3)揭示字母公式。

  师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

  (4)齐读公式,强调r2=r×r(表示两个r相乘)。

  从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

  [设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

  三、运用公式,解决问题

  1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?

  (再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2.教学例1。

  如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?

  要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)

  我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!

  师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (出示第三题)

  3.小刚量得一棵树干的周长是125.6c。这棵树干的横截面的面积是多少?

  分析题意后学生独立完成(组织交流,评价反馈)

  同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?

  4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。

  [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

  四、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?

  知道哪些条件就可求圆的面积?

  (知道半径、直径或是周长)

  知道半径:S=πr2

  知道直径:S=π(d÷2)2

  知道周长:S=π(C÷π÷2)2

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  五、课后延伸

  圆除了转化为长方形,还能转化为什么图形呢?

  板书设计:

  长方形的面积 = 长 × 宽

  圆的面积 =圆周长的一半 × 半径

  S = πr × r

  = πr2

  圆的面积教学设计4

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积

  3、看到这个课题,你想知道些什么?

  (帮助学生明确这节课的学习目标:(1)了解什么是圆的面积;(2)了解与哪些因素有关;(3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。)

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?((1)半径;(2)直径;(3)周长。)

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)、让学生拿出卡纸(1),观察卡纸(1)上的`圆被等分成多少分,圆被转化成什么图形?

  (2)、让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?

  (3)、教师课件展示圆被平均分成16等份后转化的图形。

  (4)、观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  ⑴、将圆通过剪拼,可以转化成已经学过的什么图形?

  ⑵、新的图形与原来的圆有什么联系?

  ⑶、试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

  圆的面积教学设计5

  教学目标:

  1. 知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

  3. 情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。

  教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

  教学难点:理解圆的面积公式的推导过程。

  教学准备:课件、圆形白纸、剪刀。

  教学过程

  一、创设情景,引入新课

  1、出示主题情景图:

  ①从图中你获得哪些数学信息?

  ②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?

  2、说一说:什么叫圆的面积?

  3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

  【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

  二、合作交流,探索新知

  1、回顾旧知:

  回顾以前学过的平面图形面积公式是如何推导出来的?

  指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的`图形转化成已学过的图形。

  【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。

  2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

  3、合作探究:

  (1)猜想

  (2)动手操作,验证猜想。

  (3)汇报交流,展示成果(分层展示学生研究成果)。

  【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

  4、借助网络画板制作的动态课件展示圆面积的推导过程。

  三、展示不同的等份数拼成不同的平行四边形,感受极限的思想。

  【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。

  5、推导圆面积公式。

  ①比较转化后的图形与圆,你发现了什么?

  ②全班交流,根据学生叙述板书:

  长方形面积= 长 × 宽

  圆的面积 =圆周长的一半 × 半径

  =Лr × r

  =Лr

  6、小结:圆的面积计算公式: S =Лr

  【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

  7、知识应用、内化提高

  (1)、 求下列圆的面积。(只列式不计算)

  r=3cm

  (2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

  (1) 认真读题,理解题意。

  (2) 你认为怎样解决这个问题?

  (3) 学生尝试独立计算。

  (4) 汇报解答过程及结果,集体评价。

  【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

  四.联系生活、拓展延伸

  1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

  2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?

  3、求下列圆的周长和面积。

  r=2cm

  4、求半圆的面积。

  r=4cm

  【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

  5、回顾整理,全课总结

  今天我们学到了哪些新知识?你有哪些收获?

  【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

【圆的面积教学设计】相关文章:

《圆的面积》教学设计02-07

圆的面积教学设计04-03

圆的面积教学设计11-15

《圆的面积》教学设计04-22

《圆的面积》教学设计03-09

圆的面积教学设计12-25

《圆的面积》教学设计优秀05-19

《圆的面积》教学设计优秀02-13

圆的面积教学设计优秀02-24

小学《圆的面积》教学设计04-19