小学数学六年级上册《分数应用题》教学设计

2024-06-27 教学设计

  作为一名无私奉献的老师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。怎样写教学设计才更能起到其作用呢?下面是小编为大家整理的小学数学六年级上册《分数应用题》教学设计,仅供参考,希望能够帮助到大家。

  小学数学六年级上册《分数应用题》教学设计 1

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题。

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、谈话激趣,复习辅垫

  1.师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重×5(4)=儿童体内水分的重量

  35×5(4)=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  成人的体重×3(2)=成人体内的水分的重量

  3.揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、引导探究,解决问题

  1.课件出示例题。

  2.合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的'方式把它表示出来并解答出来。

  3.学生汇报

  生1:根据数量关系式:儿童的体重×5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。

  28÷5(4)=35(千克)

  4.比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5.对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1)看作单位“1”的数量相同,数量关系式相同。

  (2)复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、联系实际,巩固提高

  1.(投影)看图口头列式,并用一句话概括题中的等量关系。

  (1)

  (2)

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的5(2),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了5(2),修了多少千米?

  (2)一条路修了50千米,修了5(2),这条路全长是多少千米?

  (3)一条路50千米,修了5(2)千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?

  ②解答分数除法应用题的关键是什么?

  ③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

  设计意图:

  一、从生活入手学数学。

  《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、有破度有层次地设计练习,提高学生的思维能力。

  教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

  小学数学六年级上册《分数应用题》教学设计 2

  教学目标:

  1、结合具体的情景,体会理解分数加减法的意义。

  2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。

  3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。

  教学重点:

  理解并掌握异分母加减法的计算方法与法则。

  教学难点:

  掌握异分母分数加减法的算理与算法。

  教学过程:

  一、复习引入

  (一)复习有关分数单位的知识。

  1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫做这个分数的单位。)

  2、填一填7/16的分数单位是(),它有()这样的分数单位。7/16和1/16的分数单位相同吗?1/2和1/4的分数单位相同吗?

  (二)复习通分

  2/7和1/31/2和1/4师:我们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,我们从这节课开始研究。出示课题:分数加减法

  二、创设情境、提出问题

  1、同分母分数加减法出示例1(展示课件)

  师:你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学问题,并解答。(四人小组合作学习)

  抽学生口头汇报,同时老师根据学生的回答课件出示。

  引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。

  生1:今天一共铺了这个广场的几分之几?列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的1/2。

  生2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?)列式为:7/16—1/16=6/16=3/8。答:下午比上午多铺了这个广场的3/8。

  师:你们真能干,不仅提出了问题,还正确的解答出来了。

  师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。

  师:有谁能用自己的话说一说分母相同的分数怎样加减呢?

  生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。

  生举出类似的算式计算(全班练习)

  2、异分母分数加减法

  师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几?今天比前几天多铺了这个广场的几分之几?

  生:1/2+1/4=3/4,1/2-1/4=1/4师:这两个算式与前边的算式的`区别?(分母不同)

  师:说说结果是怎样得来的?预设:画图得出结果。把分母变成同分母分数,再计算得出来的。把分数化成小数计算,再把计算结果的小数化成分数。……

  师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?

  学生说出自己的意见

  师:同意既适用又简便的方法(先同分,再计算)再把1/2+1/4=(),1/2-1/4=()全班练习,写出计算过程。1/2+1/4=2/4+1/4=3/41/2-1/4=2/4-1/4=1/4

  师:同学们在计算过程中,最关键的步骤是什么?

  生:最关键的步骤是先通分,再计算。

  师:说一说,异分母分数的计算方法?

  生:异分母分数相加减,先通分,再按同分母分数加减法计算。

  三、学生练习

  1、基础练习填一填:(出示课件)

  ①同分母的分数相加减,(分母)不变,(分子)直接相加减,计算的结果要化为(最简分数)。

  ②异分母分数相加减,先(算一算:4/15+7/15=11/155/6+7/8=20/24+21/24=41/24

  2、拓展练习下面的题有什么特点?怎么算比较快?1/4+1/3=1/3+1/7=两个分母是互质数,分子都是1。得出:1/a+1/b=(b+a)/ab

  3、接龙游戏

  1/2+1/33/4-1/2

  四、课堂小结

  1/2-1/32/3+1/61/2+3/42/3-1/61/a-1/b=(b-a)/ab1/3-1/4=1/2-1/5=17/18-13/18=4/18=2/97/9-2/3=7/9—6/9=1/9通分),再按(同分母分数加减法)计算。(每组6个同学,一个接一个地计算,看哪组又对又快)

  小学数学六年级上册《分数应用题》教学设计 3

  教学内容:

  课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:

  正确分析数量关系,找准单位1

  教学难点:

  依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的'钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

  小学数学六年级上册《分数应用题》教学设计 4

  教学目标:

  1、使学生理解稍复杂的求一个数的几分之几是多少的应用题数量关系;初步掌握这类应用题的结构特点,解题思路和解题方法。

  2、提高学生分析问题的能力。

  3、使学生养成认真审题的良好习惯。

  教学形式:

  班级教学与小组合作学习相结合。

  一、教学过程

  1、铺垫:在旧知的复习中,为学生主动进行新知的学习作好准备。

  准备题(1):国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4,我国约有多少只?

  教学过程:

  ①用线段图表示题意,以10厘米为一段,这条线段一共要画几厘米?(学生口答老师在黑板上作图)

  ②用去是什么意思?(请一个同学上来把它表示出来)③用去多少吨是求线段中的那一部分?谁愿意上来把它画出来?

  准备题(2):人的心脏跳动的次数随年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多60次。婴儿每分钟心跳多少次数?

  教学过程:

  ①准备题(1)反映了总量和部分量的关系,作图时只要画一条线段。这一题反映了什么关系?应画几条线段?

  ②先画什么?为什么?(学生口答老师在黑板上作图)

  ③画婴儿每分钟心跳的次数时先画什么?

  ④60次应画多长?谁愿意上来把它画出来?

  ⑤婴儿每分钟心跳的次数是求线段图中的那一部分?

  准备题(1)、(2)作图并分析后要求学生用1分钟时间列出两道题目的算术并计算(两人板演),然后讲评并表扬做得全对的同学,同时对个别同学的错误进行有针对性的纠正。

  2、探求新知:让学生在主动探索的过程中掌握新知识。

  例4:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4,其它国家约有多少只?

  教学过程:

  ①例4与准备题(1)相比有何变化?

  ②线段图应该怎么改?你会改吗?(请一个同学上黑板改)

  ③这道题老师不讲你会做吗?(请两个同学上黑板做,其余学生在下面做,不会的可以看书。)

  ④作好的同学可以考虑有没有不同的方法,试试看。

  ⑤作好后准备回答下列问题:把什么看作单位“1”,先求什么?再求什么?

  ⑥讨论、讲评试做情况,对两种方法全对的同学进行表扬,最后看书并填写书中空白部分。

  例5:人的心脏跳动的次数随年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多4/5。婴儿每分钟心跳多少次数?

  教学过程:

  ①例5和准备题(2)相比有何变化?

  ②线段图应该怎么改?谁会改请你上来指导老师改?

  ③全班学生四人一组讨论以下问题:

  a、把谁看作单位“1”?

  b、怎样求婴儿每分钟心跳的次数比青少年多的?

  c、婴儿每分钟心跳的次数是青少年的几分之几?

  d、你能用两种不同的方法求婴儿每分钟心跳的次数吗?

  ④选两个讨论小组,每组各推选两人,每人各用一种方法上黑板板演,其余学生在下面做。讨论、讲评试做情况,对讨论得好的小组进行表扬,对讨论中的不足之处提出希望。

  3、深化:在新旧知识的'对比中,使新知纳入到学生原有的知识结构中。

  教学过程:

  ①引导学生对比每个例题的两种解法,发现在解题思路上不同的是:一种是先求分率,用乘法分配率可以看出两种解法的联系。指出今后两种解法中你认为那一种方便你就用你一种。

  ②引导学生对比例题和准备题发现今天讲的比过去讲的要复杂一些,讨论复杂在何处。

  二、巩固练习:

  完成教材第69页“做一做”的题目。

  三、课堂总结:

  1、这节课学习的应用题有什么特点?(引导学生与准备题比较,找出应用题的结构特点,板书课题)

  2、这样的应用题与前边学习的分数乘法应用题之间是什么关系?怎样区别?解答这类应用题的思路是什么?

  四。课后作业:

  练习十七第1———4题。

  小学数学六年级上册《分数应用题》教学设计 5

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。

  ⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的`储蓄钱:

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

  小学数学六年级上册《分数应用题》教学设计 6

  教学内容:

  P17~19连续求一个数的几分之几是多少的分数乘法应用题

  教学要求:

  1、使学生掌握连续求一个数的几分之几是多少的分数乘法应用题的解答方法,并会正确解答这类应用题。

  2、让学生进一步体验数学与日常生活的密切联系,在共同的探讨中培养合作意识。

  教学重点:

  理解题意,分析数量关系。

  教学难点:

  两次判断谁作单位“1”的量。

  教学过程:

  一、回顾旧知,复习铺垫

  1、指出下面每题中的两个量,应把谁看作单位“1”。

  (1)男生人数占全班的。

  (2)图书总数的是科技读物。

  2、指出下面各题中的两个分数,各把什么看作单位“1”。

  (1)苹果的重量是橘子的,梨的重量是苹果的。

  (2)篮球的.个数是足球的,足球的个数得排球的。

  3、一根电线长10米,用去,还剩下这根电线的几分之几?还剩多少米?

  二、引导探索,学习新知

  1、揭示课题。

  今天我们来学习连续求一个数的几分之几是多少的分数乘法应用题。

  2、创设情境,引出例题

  小亮、小华、小新三人在说班里同学们理想,请看他们的对话:

  小亮:我们班有36人。

  小华:的同学长大后想成为教师。

  小新:想成为科学家的人数是想当教师人数的。

  学生提出数学问题

  3、动手操作,理解题意,学生动手画线段图

  4、主动尝试,解答例题

  (1)讨论,学生交流解题方法,并尝试解答。

  (2)汇报,学生说解题过程,第一步求什么?第二步求什么?

  板书:想成为教师的人数:36×=12(人)

  想成为科学家的人数:12×=9(人)

  (3)追问:第一步求想成为教师的人数,就是求什么?

  第二步求想成为科学家的人数,就是求什么?

  三、巩固深化,拓展思维

  P18第4题。让学生说说每一步求的是什么?谁是单位“1”?

  四、小结

  在解答应用题时,每一步都要找准单位“1”,如果是求“一个数的几分之几是多少”,就用乘法进行计算。

  五、课堂练习,辅助消化

  1、P19第9、10题。

  2、P19第6题。

  六、课外补充,拓展延伸

  1、三个修路队合修一条公路,甲队修了12千米,甲队修的等于乙队的,丙队修的相当于乙队修的。丙队修了多少千米?

  2、有三筐苹果,第一筐苹果重28千克,第二筐苹果是第一筐的,第三筐苹果的重量比第二筐的多5千克。第三筐苹果重多少千克?

  小学数学六年级上册《分数应用题》教学设计 7

  教学目标

  1、理解以“和倍”问题为基础的分数应用题的解题思路、会列方程解答此类应用题。

  2、培养学生的迁移类推能力。

  3、培养学生运用所学的知识解决生活中的实际问题的能力。

  教学重点

  理解应用的数量关系,找到题目中的等量关系。

  教学难点

  找准题中的等量关系。

  教学过程

  一、复习。(用含有字母的式子表示)

  1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。

  苹果树和梨树一共有()棵。

  2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

  二、生活引入

  上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的'2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

  1、老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了。

  2、板书课题:分数除法应用题。

  3、学生读题,理解题意弄清谁是单位”1“,画出线段图。

  4、分层指导。

  思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

  (2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师,杨莹的岁数用含有的式子怎么表示?

  5、学生练习,集体订正,说明思路。

  三、尝试练习

  (一)出示例3

  例3、饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的、白兔和黑兔各有几只?

  1、读题,理解题意弄清谁是单位”1“,画出线段图。

  2、小组回答:

  (1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

  (2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含有的式子怎么表示?

  3、学生练习。

  4、学生打开书本对答。(65页)

  解:设白兔的只数为只,黑兔的只数是?

  白兔只数+黑兔只数=总只数

  答:白兔有15只,黑兔有3只。

  4、教师提问:这道题还可以怎样列式?

  18÷(1+)什么意思?

  (二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答。

  1、商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

  2、商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

  教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为,另一个数就是几分之几,根据已知条件列出方程解答。

  四、巩固练习

  (一)变式练习

  小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

  (二)对比练习

  1、李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

  2、李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

  (三)选择练习

  果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

  解:设桃树有x棵。

  A、B、

  C、D、

  五、质疑总结

  1、用方程解这类题的关键是什么?

  2、用算术方法解答时应注意什么?

  六、板书设计

  分数除法应用题

  解:设老师的年龄是x岁。

  ......老师年龄

  42-30=12......杨莹的年龄

  答:老师30岁,杨莹12岁。

  小学数学六年级上册《分数应用题》教学设计 8

  教学目标:

  1.使学生理解和掌握分数乘法应用题的数量关系,学会解答连续求一个数的几分之几是多少的乘法应用题及其计算方法。

  2.让学生在“用数学”活动中,学会收集、选择和加工信息,培养学生分析和解决实际问题的能力。

  3.进一步让学生体验数学与日常生活的密切联系,在共同探讨中培养合作意识。

  教学重点:

  掌握求一个数的几分之几是多少的两步应用题的解题思路和计算方法。

  教学难点:

  理解应用题中单位“1”和问题的关系。

  教学过程:

  一、铺垫复习,揭示新课

  结合下列条件,找出单位“1”,说说数量关系式,然后解决问题。(只列式不计算)

  课件逐一出现:

  (1)一本书已经看了2/3。

  (2)篮球只数的1/4和足球相等。

  (3)鸭的重量是鸡的8/5倍。

  学生按要求回答。师:会用线段图表示题中的已知条件和问题吗?试试看。

  二、新授:

  1.教学例4

  鹅的孵化期是30天,鸡的孵化期相当于鹅的十分之七,鸽子的孵化期相当于鸡的二十一分之十六,鸽子的孵化期是多少天?

  师:现在看着问题,求“,鸽子的孵化期是多少天?”可以怎样去思考?(小组讨论一下)

  学生回答(引导学生用分析法和综合法来思考)(可以从条件想,用据鸡的孵化期相当于鹅的十分之七,把鹅的孵化期是30天看做单位1,孵化期30天×7/10=鸡的孵化期;再根据鸽子的孵化期相当于鸡的二十一分之十六,把鸡的孵化期,看作单位1,用鸡的孵化期×16/21=鸽子的孵化期。)(还可以从问题来思考教师带领学生思考)

  师:下面我们一起来试着做一下。

  学生做,教师巡视。

  板书出示学生做的分步列式,带过。问:能列出综合算式吗?怎么列式?

  教师随着学生的回答把综合算式写在黑板上。问:这个算式和我们前面学的'分数乘法有什么不同?(前面学的是一步计算,两个数相乘,分数乘整数或分数乘分数,现在这个算式是三个数在相乘)

  2.揭题。教师:这就是我们这节课要学习的分数连乘。(板书课题:分数连乘)连乘你们会做吗?请一位同学上黑板做,其余在下面试试看。

  学生做完后,请板演学生说说是怎么进行计算的。其实就是怎么进行约分的?

  教师:书上是怎么进行分数连乘运算的?计算时要注意些什么?(先约分再计算。在过程当中分子和分母全部约完,再计算。)

  教师小结:计算分数连乘时,要先约分,再把约分的结果相乘。这样比较简便,也不容易出错。

  三、运用知识,解决问题

  1.练习三:11页1题横三个

  师:下面你们能用刚才学到的计算方法来试着做几道题吗?

  学生独立计算,重点第二题中的12是作分子呢还是作分母?为什么?

  2.改错

  四、课堂小结:分数乘法应用题有什么特点?解答分数乘法应用题的关键是什么?解答时要注意什么?

  五、作业:P124、5、6

  例4、

  板书设计:分数连乘

  30×7/10=21

  21×16/21=16(天)

  30×7/10×16/21

  小学数学六年级上册《分数应用题》教学设计 9

  教学内容:

  义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。

  教材简析:

  教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

  教学目标:

  1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

  2.能力目标:通过让学生说一说、画一画,培养学生的.分析能力、概括能力、综合能力,培养学生的探究意识。

  3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。

  教学过程:

  一、创设情境,谈话导入。

  谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

  [设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

  二、自主探究,获取新知。

  1.课件出示教科书73页情境

  谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

  (1)北京故宫的占地面积大约是多少公顷?

  (2)我国的世界文化遗产和自然遗产一共有多少处?

  (3)我国的世界文化遗产比自然遗产多多少处?………

  (4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?

  2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

  [设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。

  3.选择你喜欢的方法试着独立解决这一问题好吗?

  4.学生汇报交流。

  让学生到前面展示不同的方法,分别说说自己的解题思路。

  (1)272×1/4=68(公顷) 68+4=72(公顷)

  (2)272×1/4+4

  =68+4

  =72(公顷)

  学生在多次交流解题步骤中,教师板书数量关系

  天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积

  并展示学生画的线段图。让学生分析线段图。

  [设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

  5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?

  学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)

  全班交流,展示做题方法。

  (1)30×7/10+30×2/15 (2)30×(7/10+2/15)

  =21+4 =30×25/30

  =25(处) =25(处)

  6.让学生展示线段图的画法,说清解题思路。

  7.点题并板书:分数应用题。

  8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

  9.小结:乘法的分配律在分数中同样适用。

  [设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

  三、巩固练习,加深理解。

  独立完成(第75页第2、3题。)

  指生回答,并说出解题思路。

  (重点说出数量关系。)

  [设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。

  四、回归实践,拓展运用。

  课件再次出示本课信息窗情境图。

  谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?

  现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。

  课本76页第9题。学生读题,指生列式。

  [设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。

  五、谈收获。

  这节课你有什么收获?

  小学数学六年级上册《分数应用题》教学设计 10

  教学内容:

  教科书第117—118页,例4和“做一做”,练习二十五的第1—4题。

  教学目标:

  1.整理和复习与“一个数比另一个数多(或少)几分之几”有关的分数应用题,进一步理解这些稍复杂的分数应用题之间的内在联系,掌握它们的解答方法。

  2.在计算过程中进一步培养学生良好的观察、分析、判断能力。

  3.体会数学的实用价值,提高同学们对学习数学的兴趣。

  教学重点:

  稍复杂的分数应用题的数量关系。

  教学难点:

  稍复杂的分数应用题之间的内在联系。

  教具准备:

  教师准备两块小黑板,一块写好口算练习题,另一块写好教科书第117页例4及下面讨论的问题。

  教学过程:

  一、口算练习

  教师出示小黑板上的口算练习题。

  二、教学例4

  1.复习“求一个数比另一个数多(或少)几分之几”的应用题。

  “下面我们来复习分数应用题。”(出示小黑板上的例4。)

  例4 学校举办的美术展览中,有50幅水彩画,80幅蜡笔画,蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?

  “请同学们先自己解答这道应用题,解答完以后,想一想这道题中的两个问题有什么相同之处,有什么不同之处?”

  (80 - 50)÷50 =

  (80 - 50)÷80 =

  答:蜡笔画比水彩画多:水彩画比蜡笔画少。

  解答完以后,教师让学生说明这道题中两个问题的相同点和不同点。

  小结:我们在解答分数应用题时,一定要认真分析数量关系,要弄清以哪个数量作为标准,也就是说:要弄清以哪个数量作为单位“1”。

  2.复习“已知一个数比另一个数多(或少)几分之几和其中的`一个数,求另一个数”的应用题。

  “接着例4的这两个问题,我们再来讨论下面的两个问题。”(出示小黑板上其余的问题。)

  (1)根据“蜡笔画比水彩画多”这个条件

  如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

  如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

  (2)根据“水彩画比蜡笔画少”这个条件

  如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

  如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

  分析的时候,教师要引导学生弄清什么时候用乘法计算,什么时候列方程解答或用除法计算。一般可以概括成:当我们知道了作为单位l的数量,要求它的几分之几时,就用乘法计算(根据乘法的意义1);反之,如果是求作为单位“1”的数量时,列方程解答,或者是用除法计算(根据除法的意义)就比较方便。

  3.复习百分数应用题。

  “如果我们把以上各题中的分数都改为百分数,解答的方法一样吗?”(一样)

  (例如。把例4的问题改为求“蜡笔画比水彩画多百分之几?水彩画比蜡笔画少百分之几?”解答的结果是百分数。)“百分数应用题与分数应用题实质是一样的,只不过是把比较两个数量关系的分数用百分数来表示。”

  1.做教科书第117页“做一做”的第l题。

  教师巡视,做完后集体订正。订正时,可以请一名学生说一说合格率与废品率的关系,以加深学生对这些实际问题的理解。

  2.做教科书第117页“做一做”的第2题。

  谈谈这节课你的收获?

  练习二十五的第1—4题。

  • 相关推荐

【小学数学六年级上册《分数应用题》教学设计】相关文章:

小学数学教学设计:《分数意义》04-04

小学数学教学设计:《分数意义》04-04

小学数学分数的意义教学设计09-26

复合应用题数学教学设计10-18

六年级上册分数应用题训练10-14

数学《真分数和假分数》教学设计04-01

数学《真分数和假分数》教学设计05-24

小学数学六年级上册教学设计03-08

小学数学六年级上册教学设计10-27

《分数应用题》教学反思02-03