三角形内角和教学设计

2021-05-25 教学设计

  《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。下面是小编收集整理的三角形内角和教学设计,欢迎阅读参考!

  背景分析:

  在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。

  教学目标:

  1.通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。

  2.会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。

  3.体会数学学习的魅力,体验探究学习的乐趣。

  教学重难点:

  探索和发现三角形的内角和等于180°。

  教具准备:

  多媒体课件、一副三角板、量角器、三角形纸片。

  学具准备:

  每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。

  教学过程:

  一、导入课题

  1、故事引入,激发兴趣

  同学们,今天,老师给大家带来一个小故事,想听吗?

  课件显示数学家-----帕斯卡的图片

  师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。

  师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?

  揭示并板书课题:三角形的内角和。生齐读课题。

  2、明确目标

  学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)

  3、效果预期

  带着这些问题,我们一起走进今天的探究之旅,老师期待大家的精彩表现,大家准备好了吗?。

  〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。

  二、民主导学

  1、任务呈现

  (1)认识内角、内角和

  师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形.

  师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。

  师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,

  师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3

  师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。

  师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)

  师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?

  师:我们现在开始验证好吗?动手之前,请听好活动要求

  屏幕出示要求,指名学生读:

  想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;

  想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;

  想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;

  验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。

  2、自主学习

  学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)

  3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)

  师:来吧孩子们,该到全班交流的时候了.哪个小组愿意先把你们的成果与大家一起分享。

  A、剪拼法(撕拼法)

  这个小组通过剪拼得出三角形的内角和是180

  B、折拼法

  刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试

  C、测量法

  用量的方法的小组,你们得出的三角形的内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?

  刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)

  小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。

  〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。

  4、数学文化介绍

  你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?

  生:

  师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°

  师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?

  生:分成了两个直角三角形。

  师:你真会观察,请大家看,∠1+∠2=

  生:90°

  师:∠3+∠4=

  师:那么这个三角形的.内角和就是

  生:180°

  师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?

  生:巧妙!

  师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。

  〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。

  5、练习

  (1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?

  (2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:

  求出等边三角形每个角的度数?

  等腰三角形顶角96°,底角是多少度?

  直角三角形的一个锐角是40°,另一个锐角是多少度?

  〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。

  三、检测导结(下面进入检测环节,大家愿意接受挑战吗?)

  1、目标检测(见检测卡)

  2、结果反馈

  集体订正

  课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。

  3、反思总结

  回顾一下今天学的内容,你有什么收获?

  大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”

  其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?

  生:帕斯卡

  师:NO,另有其人,如果大家感兴趣,课后可以去查一查。

  〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。

【三角形内角和教学设计模板】相关文章:

多边形的内角和教学设计02-09

《三角形的内角和》优秀说课稿模板12-28

《三角形的内角和》教学反思8篇04-15

 三角形的内角和课件和教案05-12

三角形的内角和试讲稿11-16

《三角形的内角和》说课稿7篇11-05

三角形的面积教学设计06-01

《三角形的面积》教学设计 05-31

《狮子和鹿》教学设计和反思12-16

《等腰三角形》教学设计02-14