《三角形三边的关系》教学设计

2024-06-09 教学设计

  《三角形边的关系》是人教版小学数学四年级下册第五单元三角形三边关系的教学。是在学生已经学过三角形初步认识的基础上进行的,是三角形概念的深化,引导学生从感层面把握三角形向关系层面把握三角形,为以后学习三角形的其他知识奠定基础。下面给大家分享《三角形三边的关系》教学设计,欢迎借鉴!

  《三角形三边的关系》教学设计 1

  教学目标:

  1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

  2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

  教学重点、难点:探索并发现三角形任意两边之和大于第三边。

  教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。

  教学过程:

  一、复习旧知,导入新课

  这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

  二、动手操作,发现问题

  师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

  生:三角形。

  师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

  师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。

  三、猜想验证,发现规律

  师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

  生:换一根小棒

  师:怎样换?同学们说的都是你们的猜想(课件1演示猜想1)

  1、学法指导

  师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。

  操作要求:

  (1)、2人一组合作完成四种拼法

  (2)、围三角形时要注意首尾相连。

  (3)、完成后,填写好活动记录表准备交流

  第一根小棒长

  第二根小棒长

  第三根小棒长

  能否围成三角形

  2、动手操作,寻找规律(师巡视,并指导)

  3、交流汇报,探究规律。

  师:哪个小组愿意来汇报。

  小组上台展示,

  3厘米、8厘米、10厘米 能

  3厘米、5厘米、10厘米 不能

  3厘米、5厘米、8厘米 不能

  5厘米、8厘米、10厘米 能

  师:其它组有不同意见吗?

  师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

  三根小棒要围成三角形,必须满足什么条件?

  通过刚才的.实验和分析,你发现三角形三条边长度之间有什么关系吗?

  先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

  生:

  师:其他同学赞同吗?谁再来说一说。

  师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)

  师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

  生:3+5=8 重合了 不能

  师:是这样吗?(课件演示)请看大屏幕。

  师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

  师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

  师:那么怎样才能围成三角形呢?

  生:两条边加起来要大于第三边就行了。

  师(板书):两边之和大于第三边

  师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。

  3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

  生:有一种不符合就不行了。

  师:看来只是其中的两条边之和大于第3条边是不完整的。

  生1:加“任何”、“任意”。

  生2:其他两边之和都大于第三条边。

  生3:无论哪两条边之和都要大于第三边。

  4、归纳小结

  师:看来只是其中的两条边之和大于第3条边是不完整的,

  师:这句话概括说就是:任意两边之和大于第三边(板书:任意)

  师:是这样吗?再挑选一组能围成三角形的三条边,来验证:

  生:3+4>5、3+5>4、4+5>3,

  师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

  四、课堂小结

  老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?

  师:今天你有什么收获?

  《三角形三边的关系》教学设计 2

  教学目标:

  1.理解两点之间线段最短,理解三角形任意两边的和大于第三边。

  2.经历拼一拼、移一移等操作活动,探索、归纳出三角形三边的关系,培养学生自主探索,合作交流、抽象概括能力,积累活动经验。

  3.渗透模型思想,体验数据分析,数形结合方法在探究过程中的作用。

  教学重点:

  理解三角形任意两边之和大于第三边。

  教学难点:

  理解两条线段和等于第三条线段时不能围成三角形,理解“任意”二字的含义。

  教学资源:

  小棒、多煤体课件。

  教学过程:

  同学们好,这节课我们研究三角形三边的`关系。

  一、创设情境,导入新课。

  1.三角形三边的关系教学设计三角形三边的关系教学设计(课件)主题图。小明上学,你猜他会走哪条路?这条路与其他两条路相比有什么特点?(中间这条路直直的,是一条线段,上面哪条路是两条线段组成的,下面这条路是一条曲线。)小明为什么走中间这条路?(这条路最短)课件演示:三条连线比较长短(师:两点之间所有连线中线段最短,这条线段的长度,叫做两点间的距离。)

  2.实物展台上放三根小棒:,现在这样围成三角形了吗?谁来围一围?刚才没围成三角形,现在就围成了,围成三角形的关键是什么?(每相邻两条线段的端点相连)

  3.如果从三根小棒中拿走一根,剩下的两根能围成三角形吗?能想办法变成三小棒吗?(把一根小棒剪成两段,变成三根小棒)把两根小棒变成三根,就一定能围成三角形吗?这节课我们一起研究三角形边的关系。板书课题;三角形三边的关系。

  二、操作演示,观察发现。

  1.(课件出示四根小棒)有四根小棒6、5、3、2(单位:厘米)

  2.任意取三根摆一摆三角形,会有几种情况?(课件:①6、5、3;②6、5、2;③6、3、2;④5、3、2。

  3.请同学们动手摆一摆,并填写好学习单,小组交流有什么发现?。

  4.组织全班交流:学生边说,老师边课演示。

  第一种情况:6+5>3,6+3>5,5+3>6;

  第二种情况:6+5>2,6+2>5,5+2>6;

  第三种情况:6+3>2,6+2>3,3+2<6;

  第四种情况;5+3>2,5+2>3,3+2<5

  5.三角形任意两边的和大于第三边。

  三、实践应用,拓展延伸。

  在能拼成三角形的各组小棒下面画“√”(单位:cm)

  四、反思总结,自我建构。

  这节课你有什么收获?(三角形任意两条边的和大于第三边。)

  这节课我们就研究到这儿,同学们再见!

  《三角形三边的关系》教学设计 3

  教学内容:

  人教版义务教育课程准实验教科书四年级下册第82页

  教学目标:

  1、通过探究三角形三边之间的关系,发现三角形任意两边的和大于第三边。

  2、通过学生动手操作、验证、合作交流,经历探究发现的过程。培养学生观察、思考、抽象概括的能力。

  教学过程

  一、谈话引入

  1、说说对三角形的了解。

  2、谈谈三角形三条边之间的关系。

  二、活动展开

  1、组织讨论在什么情况下不能围成三角形?

  2、猜测怎样的'情况下能围成三角形?

  3、讨论以上想法。

  4、得出结论。

  三、总结关系

  三角形三边的关系是怎样的?

  四、巩固练习

  1、挑三条线段围成三角形。

  2、有两根小棒分别为2厘米,5厘米。再配上一根几厘米的小棒就能围成一个三角形。

  《三角形三边的关系》教学设计 4

  教材分析

  本课通过实验来发现三角形任意两边的和大于第三边。

  学生们知道“两点之间线段最短”,能对线段的长度进行基本的测量与计算。

  教学目标

  1、使学生知道三角形任意(较短)两边的和大于第三边。

  2、让学生经历探索数学的过程,通过猜想—实验—结论的方式,感受数学在学习、生活中的作用。

  3、通过学生动手操作、想像、猜测,进一步发展空间观念,提高观察能力和动手操作能力,培养学生的数学思维。

  教学重点:通过实验发现三角形任意两边的和大于第三边。

  教学难点:判定两条线段的和等于第三条线段时能不能组成三角形。

  预设过程

  一、引入:

  1、把一根吸管任意剪成三段,再用电线穿在一起,(这电线穿在一起做什么用知道吗?)头尾相连,会得到什么图形?

  2、首尾相连一定是三形吗?(举手表决)。刚才有的同学认为可能围成,有的认为可能围不成,那到底能不能呢?同桌合作,剪一剪,围一围。

  二、展开:

  1、学生操作:把一根吸管任意剪成三段,再用电线绕一绕。

  2、反馈:

  把具代表性的`三种不同情况的贴在黑板上。为了便于研究,给标上序号。

  (围成的贴三个、围不成的各一个,)

  3、同桌讨论思考:假如我们把吸管看成三角形的三条边,也就是三条线段。同样的一根线段,任意剪成三段,为什么1、2、3号能围成三角形,而4、5号却围不成呢?课件演示.

  4、交流并作第一次。板书:三角形两条边的和大于第三边。

  5、尝试:出示4厘米、10厘米、5厘米的三条线段。

  符合两边和大于第三边,能围成三角形吗?

  6、第二次:板书:任意(较短)两边的和大于第三边。

  7、自学:书上是怎样说三角形的三边关系的,自学书本第82页。

  三、巩固:

  1、书上86页习题,在能围成三角形的各组小棒下面画钩。集体交流,能不能用刚才的算式来说明?有没有用简单的方法来判断或你认为哪个办法能快速判断?

  2、对习题进行变式练习

  ①3厘米4厘米5厘米:观察边有什么特点?是不是所有的三个连续自然数都能围成三角形呢?举例:1、2、3或0、1、2或7、8、9。

  想象一下,这三条线段围成的三角形是怎样的?(初中会学到勾三、股四、弦五)

  ②3厘米3厘米3厘米:三边有什么特点?围成的图形是怎样的?(正三角形或等边三角形)是不是所有的三条相等的线段都围成正三角形?

  ③2厘米2厘米6厘米:怎么变才能围成?怎样判断呢?

  ④3厘米3厘米5厘米:用手势表示一下围成的样子,知道是什么三角形吗?如果换掉其中5厘米的这条边,可以怎么换?讨论一下。

  交流:为了研究方便,我们都以取厘米的数。

  331:搭起来的三角形会是怎样的?用一个词来说:细细的、尖尖的。。。

  332、333(这是什么三角形)、334、335。发现图形有什么变化?(扁了、胖了、矮了)

  如果要换调3厘米的边,可以怎么换?

  四、拓展

  1、哪条路最近?请用今天所学知识来解释。

  2、抽象出三角形:用字母表示三角形三边关系

  3、根据三角形的三边关系剪三段围成三角形中的奥秘解析

  4、。

  《三角形三边的关系》教学设计 5

  一、说教材

  通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。

  根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。

  (一)教学目标

  1、通过创设问题情景、直观演示、观察比较,初步感知三角形边的关系。

  2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。

  3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

  4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

  (二)教学重点

  1、引导发现不能摆成三角形的原因,并探讨能摆成三角形的边的性质。

  2、理解、掌握“三角形任意两边之和大于第三边”的性质。

  (三)教学难点

  引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。

  二、学情分析

  在正式学习三角形三边关系之前,学生在生活中已经了解了一些关于三角形三边关系的感性经验,这些经验构成了学生学习的认知基础。过程中,学生在抽象概括三角形三边之间的关系时,可能在数学语言的描述上会有一定的困难,表达上也可能不够严密,但只要学生表达的意思对,教师就应该积极的给以肯定,同时教师要给学生更多探讨的空间和交流的机会,毕竟数学模型的建立和思维的发展需要经历一个渐近思辩的过程。

  三、说教法和学法

  在“活动参与、自主建构,联系生活、运用数学”的设计理念指导下,我的教学思路是:问题引领、动手操作、探究规律,并在解决生活实际问题中促进每一位学生获得不同的发展。

  (一)创设问题情景,激发学生学习兴趣

  我先给学生创设情景,引起悬念,让学生在动、观察、感知的基础上,激发学生学习数学的兴趣。

  (二)动手操作、合作探究、自主建构数学规律

  新课标强调要从学生已有的生活经验出发,在设计课程方案时,充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。让学生动起来,活起来,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。

  (三)联系生活,体会数学应用价值

  现实生活中存在着大量的'数学问题,学生学习数学已不仅仅局限于教材之内,而是扩大到了生活的每个角落。因此,我将有意识地引导学生从数学的角度,应用所学的知识“三角形任意两边的和大于第三边”去解决生活中实际问题,让学生学有价值的数学。通过解决生活中的问题,让学生感受到数学源于生活,更要服务于生活。

  四、说教学程序设计

  (一)创设情境,使学生对三角形三边关系的探索成为一种需要。

  (二)自主探究,经历、体验三角形三边关系的形成、发展过程。

  (三)巧设练习,促进思维的发展,体验数学的意义和价值。

  《三角形三边的关系》教学设计 6

  一、说教材

  本节课内容是人教版义务教育课程标准实验教科书《数学》第八册第82页例3。这一内容是在学生初步了解三角形的定义的基础上,进一步研究三角形的组成特征。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否围成三角形的标准,熟练灵活地应用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。

  新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。引悟教育的目标,强调在教师的引导作用下,由“获得知识结论快乐”转变为“探究发现知识快乐”。依据新课标的精神、引悟教育的目标、学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:

  (一)教学目标

  1、通过创设问题情景、实践操作、观察比较,初步感知三角形边的关系。

  2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。

  3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

  4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

  (二)教学重点

  探究发现三角形任意两条边的和大于第三边。

  (三)教学难点

  理解性质中的“任意两边”。

  二、说教法

  新课程改革要求教师要由传统意义上的知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在自主探索中,学习新知、经历探索、获得知识。

  三、说学法

  有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,为此我十分注重学生学习方法的指导,在本节课中,我指导学生学习的方法为:动手操作法、观察发现法、自主探究法、合作交流法。让他们在剪一剪、围一围、比一比、想一想、议一议等活动中提高能力,获得知识。

  四、说教学程序

  为了突出重点,突破难点,达到已定的教学目标。我主要安排了以下的几个教学环节。

  (一)置境引入,使学生对三角形三边关系的探索成为一种需要。

  教育情境的设计,是引悟教育的基础性工作,这种带有准备性的基础工作,直接关系到学生的学,同时也直接影响到学生的悟,以及悟的成果。基于这样的认识,在本节课开始,我结合学生已有知识与生活实际,创设了这样的数学情境:(课件出示小明上学的路线)小明去学校一共有几条路可走,走哪条路最近,为什么?这样的问题情境贴近学生的生活,学生凭着自己的生活经验,知道走哪条路更近,但却苦于表达不出其中蕴含的道理,就使得对于三角形三边关系的探索内化成学生的一种需要。(适时板书课题:三角形三边的关系)

  (二)联结感悟,经历、体验三角形三边关系的形成、发展过程。

  借鉴杜威“做中学”的思想,我在设计本课时,充分发挥学生主体精神,留有足够的时间和空间,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中得以发展。

  这个环节我安排了二个层次的操作活动:

  活动一、动手操作,大胆猜想

  为每位学生提供小棒,让学生用剪刀随意剪成三段,试着围三角形。在围的过程中,学生会出现能围成和不能围成两种情况。我抓住这一契机巧妙设疑:为什么都是三段小棒有的能围成一个三角形,有的不能够围成一个三角形呢?这里面隐藏着什么秘密?带着疑问开始活动二。

  活动二、小组合作,再次操作,深入探究

  每个小组用老师前面发放的四组小棒摆三角形,并做好记录。(出示表格)

  小棒长度(厘米) 能或不能摆成三角形 任意两边的和是否大于第三边

  4 、5、6 4+5○6 6+5○4 4+6○5

  2、5、6 2+5○6 5+6○2 2+6○5

  4、6、10 4+6○10 6+10○4 4+10○6

  2、3、6 2+3○6 6+3○2 2+6○3

  经过这两个操作活动后,我让学生观察表格结果,说一说不能摆成三角形的情况有几种?为什么?能摆成三角形的三根小棒又有什么规律?得出了“三角形两边之和大于第三边”的结论,从而初步认识了三角形三边的关系。接着提问“这样的归纳全面吗?”这使学生敏感的意识到这种表达可能有问题,问题出在哪呢?学生不得不深思。最后学生终于发现:三角形任意两边之和大于第三边。(板书:三角形任意两边之和大于第三边。)对“任意”二字的理解,使学生对三角形三边之间关系的认识得到了深化。

  (三)前后呼应,快乐生成

  有了前面的感悟,此时再回到第一环节中的情境,提出问题:通过实验,我们知道了三角形三条边的.一个规律,你能用它来解释从小明家到学校哪条路最近的原因吗?让学生用自己的发现解释,使学生能把学到的知识运用于实际生活中,从而生成新知,生成能力,生成智慧。

  (四)构建模型、联系实际

  本着练习的设计要有针对性、典型性、层次性、趣味性的原则,我设计了以下几组练习题:

  1、教材P86第四题。

  在学生完成后,我继续提问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?得出只要比较较短的两条线段之和是否大于第三边就可以判断能否围成三角形了。

  这一题的设计,不仅使学生巩固了基本的知识点,强化教学重点和难点,同时还提高学生对组成三角形的规律的认识,掌握了更好的判断方法——较小两条线段之和大于第三条线段便可构成三角形。

  2、教材P88第11题。

  题目:用长分别是4厘米、6厘米和10厘米的三根小棒,能摆出一个三角形吗?

  此题设计使学生对三角形三边关系进一步理解,加深“两边之和等于第三边时不能构成三角形”这个知识点的印象。

  3、思维拓展题

  题目:小猴盖新房,他准备了2根 3米 长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?

  这一题不仅充满趣味性,而且使学生思维得到进一步发展,同时也可以培养学生应用数学知识合理解决生活问题的能力。

  (五)延伸

  近下课时,我反问学生:这节课,你觉得自已学会了什么?还有什么地方不太理解?然后让学生发表意见,自己梳理一下今天所学习的知识。多找几个学生说一说,给他们充分展现自我的机会。

  五、说板书设计 {板书设计}

  三角形三边的关系

  小棒长度(厘米) 能或不能摆成三角形 任意两边的和是否大于第三边

  4 、5、6 4+5○6 6+5○4 4+6○5

  2、5、6 2+5○6 5+6○2 2+6○5

  4、6、10 4+6○10 6+10○4 4+10○6

  2、3、6 2+3○6 6+3○2 2+6○3

  三角形任意两边的和大于第三边

  这样的板书设计,力求突出教学重点,使学生一目了然。

  我的说课到此结束,谢谢大家!

  《三角形三边的关系》教学设计 7

  教学目标:

  1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。

  2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。

  3.培养学生积极的学习态度和乐于探究的数学情感。

  教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。

  教学难点:运用三角形三边的关系解决实际问题。

  教学准备:课件

  教学过程:

  一、谈话引入

  1.举例:生活中哪些物体的面是三角形的?

  2.复习三角形的各部分名称。

  提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?

  引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……

  3.导入新课。

  三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)

  二、交流共享

  1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?

  2.操作交流。

  (1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。

  教师巡视,了解学生的操作情况。

  (2)小组交流。

  布置学生将各自的操作情况在四人小组内进行交流。

  (3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?

  学生回答预设:

  ①选择8cm、5cm、4cm三根小棒,能围成三角形。

  ②选择5cm、4cm、2cm三根小棒,能围成三角形。

  ③选择8cm、4cm、2cm三根小棒,不能围成三角形。

  ④选择8cm、5cm、2cm三根小棒,不能围成三角形。

  追问:第③种情况和第④种情况为什么不能围成三角形?

  引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。

  教师小结:因为4cm+2cm8cm,5cm+2cm8cm,所以不能围成三角形。

  3.探索规律。

  师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?

  (1)布置探索任务。

  从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?

  (2)学生独立探索。

  (3)交流汇报。

  第①种情况:4+58、4+85、5+84;

  第②种情况:4+25、4+52、5+24。

  小结:任意两根小棒长度的和一定大于第三根小棒。

  4.验证规律。

  提问:三角形任意两边长度的`和一定大于第三边吗?

  (1)画一画:用三角尺画一个三角形。

  (2)量一量:量出三角形的各边长度。(单位:毫米)

  (3)算一算:算出任意两边之和与第三边长度的关系。

  (4)总结规律。

  提问:通过验证,你发现三角形三边的长度有哪些关系?

  师生共同总结得出:三角形任意两边长度的和大于第三边。

  追问:对于“任意两边”这四个字,你是怎么理解的?

  5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?

  引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。

  三、反馈完善

  1.完成教材第78页“练一练”第1题。

  先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。

  2.完成教材第78页“练一练”第2题。

  这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。

  四、反思总结

  通过本课的学习,你有什么收获? 还有哪些疑问?

  《三角形三边的关系》教学设计 8

  教学目标:

  1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

  2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

  3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

  教学重点:

  理解、掌握三角形任意两边之和大于第三边的性质。

  教学难点:

  引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。

  教学准备:

  课件、不同长度纸条若干张、实验表格。

  教学过程:

  一、创设情境

  1、出示情境图。

  政府

  师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?

  (学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)

  师:你觉得老师走哪条路最近呢?为什么?

  (学生会说出中间这条线路最快,但原因说不清楚。)

  师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。

  2、大胆猜测

  师:请同学们观察,在这幅图中,你可以发现几个三角形?

  (学生边说边用手指出两个三角形)

  师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?

  师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的.关系呢?

  (学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。

  师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?

  现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的?

  揭示课题:三角形的三边关系。

  二、自主探究

  1、 动手实验1:用三张纸条摆一个三角形。

  师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)

  《三角形三边的关系》教学设计 9

  教学内容

  人教版义务教育课程实验教科书数学四年级下册P82页。

  教学目

  1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

  2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

  3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

  教具、学具准备

  多媒体课件,不同长度不同颜色的小棒若干根,实验表格 。

  教学过程

  一、创设情境,导入新课

  师:(出示课件)同学们看,图上这些地方你们都熟悉吗?

  (我们的学校、鼓楼商场还有学校后门的建设银行。)

  师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?

  师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

  师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

  师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

  师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

  师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的.办法证明我们的这种判断是正确的呢?

  (学生困惑,沉默不语.)

  师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

  (板书课题:三角形的三边关系)

  二、设疑激趣,动手探究

  师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)

  师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。

  师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

  (学生上台演示,其他同学看。)

  师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

  师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

  同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

  (单位:厘米)

  能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

  不能围成三角形的三根小棒(红、蓝、黄)的长度分别是 :

  你的重大发现

  三、汇报交流,发现规律

  让每组同学汇报围成和围不成三角形的数据。

  师:同样用三根小棒,为什么有的能围成三角形,为什么有的不能围成三角形呢?你从中发现了什么?

  根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况 ;两边之和小于第三边的情况)

  师:到底什么样长度的三根小棒可以围成三角形呢?

  结论一: 两边之和大于第三边。

  师:同学们都同意这个结论吗?有不同意见吗?

  根据学生的情况,随机用不能围成的一组数据,如“3、7、10”举一例:3+10>7,那为什么不能围成一个三角形呢?

  师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?

  进一步得出

  结论二: 三角形任意两边之和大于第三边。

  师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。

  师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。

  四、学以致用,解决问题

  1.解释老师所行路线的原因。

  2.判断。

  (2)(3)(4)

  3.(课件演示)小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?

  五、全课小结。

  《三角形三边的关系》教学设计 10

  教学目标:

  1、探究、发现三角形任意两边的和大于第三边,初步理解三角形三边的关系。

  2、经历操作、发现、应用的过程,渗透数学思想与方法,积累数学活动经验,培养自主探究、合作交流的能力。

  3、激发学生探究愿望和兴趣,培养参与数学活动的积极性和严谨的科学态度。

  教学重点:探究、发现三角形任意两边的和大于第三边。

  教学难点:应用数据发现三角形三边的关系,理解“任意”的含义。

  教学设计思路:这节课,精心设计了一系列的数学活动,让学生“在参与中体验,在活动中发展”。课堂上,学生通过自主操作、自主估猜、自主探究、自主迁移,深入认识三角形。通过课上师生之间、生生之间充分交流合作,学生自然、自主、自由地发展。

  教学过程:

  活动一:引发质疑,提出问题。

  1、 出示各种三角形。(这些是什么图形,什么是三角形?)

  2、 出示三根纸条红、蓝、黑。

  师:我们把这三根纸条看成三条线段,你能把它围成三角形吗?

  生代表上来围。师:你们觉得他围得怎么样?生补充围。我真佩服你的细心。纸条要顶点对着顶点,首尾相连,这样才能真正用上了这三根纸条的长度。

  3、围三角形比赛,(看来同学们都会围了,现在我们来进行一场比赛吧。从信封拿出纸条1号袋红3cm,蓝6cm,黑11cm。2号袋红3cm,蓝6cm,黑5cm。

  4、讨论

  为什么有些能围成有些围不成,板书(围不成) (围成)它可能跟什么有关系呢?我们来猜想一下,你说:

  生1:可能跟边有关。

  生2:跟边的长短有关系。

  师:那么三角形三边长短之间到底有怎样的关系呢?这就是这节课我们要探究的课题:出示课题《三角形三边的关系》。

  活动二:探索发现,总结归纳

  1、动手操作:

  师:刚才我们用蓝6㎝,红3㎝,黑11㎝,不能围成三角形,请不能围成三角形的同学上来展示(看来不是操作不当,到底是什么原因呢?

  生:11厘米太长了,那两根太短了。

  师:上面这两根和下面这根比,你发现了什么?

  生:我发现两根小棒之和小于第三根。

  师:从你的回答,我听到了智慧的声音,以前我们总是考虑一根和另一根去比长,而现在却考虑用两根的和去与第三根进行比较,真了不起!

  能不能用一个算式来表示呢?

  生;3+6﹤11。

  师:两边的和小于第三边不能围成三角形,两边的和与第三边有怎样的关系就可以围成三角形呢?

  生:两边的和大于第三边。

  生:两边的和等于第三边。

  (过渡)同学们有不同的猜想,生活当中许多重大发现都从猜想开始,但是光猜还不行,我们还得从实践中加以验证,接下来我们从探究验证我们的想法,我们把3cm和6cm两边的和不变缩短黑边的长度,为了便于研究,我们移到整厘米,注意刻度线对刻度线。一边围一边想,这两个结论是否正确,找到规律就可以不用每个刻度都要试,即动手又动脑,才是高效的探究。现在小组一起,可分工不同移动的刻度,要有一个同学作记录。(活动教师巡视指导)

  2、汇报交流

  教师:下面请同学们来汇报一下你的操作结果。

  请不同的学生汇报,教师在课件中输入数据和结果。

  第二层:猜想,初步得出三角形边的性质。

  师:长度是9厘米时,有争议,图形有些特殊我们重点研究它,请不能围成的同学上来说说不能围成的原因。

  生:只要将纸条3cm或6cm稍微抬高一些,纸条3cm和6cm就不能首尾相连了。师:利用课件演示。问能围成的同学此刻的想法。(善于思考能接纳同学的建议很会学习)

  生:两边之和大于第三边时能围成,用3cm、6cm和7cm展示。

  师:这个猜想对不对呢?这需要进行验证,看看这些能围成三角形的边是不是具备这样的`关系?3+6﹥7还有谁也得出这样的结论?指名说。

  师:是不是两边的和大于第三边就一定能围成三角形呢?我们用不能围成和围成对比看看。有谁改变主意了?

  第三层:引发矛盾,突破难点

  生:用3cm、6cm、11cm不能围成三角形,它也有两条边的和大于第三边板书(3+11﹥6)

  师:那这个结论正不正确,除了这两个算式还能写出第三个算试吗?

  生:6+11﹥3 围成的呢,3+7﹥6 7+6﹥3。

  师:还有别的算式吗?(没有)在围成三角形当中每两边的和都大于第三边,而不能围成的只有两组两边的和大于第三边。在数学中,每两边的和都大于第三边的,叫做任意两边的和大于第三边(板书)

  师:什么叫任意?

  师:下面我们利用这个结论,再来验证一下3cm、6cm、4cm,是不是都具备这样的关系?

  第五层:找出判断能不能围成的简捷方法。

  师:在判断能不能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?在小组内想一想,说一说;引导学生发现,因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了,所以呢?只要把较小的两条边,加起来与第三边进行判断,就可以了。

【《三角形三边的关系》教学设计】相关文章:

三角形的三边关系教学设计02-10

三角形三边关系教学设计04-30

三角形的三边关系教学设计03-31

三角形三边关系教学设计10篇04-30

《三角形三边的关系》教学设计范文(精选10篇)04-25

《三角形三边的关系》教学反思02-15

《三角形的三边关系》教学反思07-08

三角形三边关系教学反思07-08

《三角形的三边关系》数学优秀教学设计(精选7篇)08-11

《三角形三边的关系》说课稿04-17