一、教学目标
(一)知识与技能
进一步认识单价、速度的含义,会用“所花的钱/数量”表示单价,“所走的路程/时间单位”表示速度。
(二)过程与方法
经历从实际问题中抽象出单价、数量和总价,速度、时间和路程之间的关系,并能应用这种关系解决问题。获得解决问题的策略,提升解决问题的能力。
(三)情感态度和价值观
初步解生活中常见的数量及数量关系,树立生活中处处有数学的思想。
二、教学重难点
教学重点:引导学生在解决问题过程中理解“单价、速度”的概念,理解并应用三量之间的数量关系。
教学难点:用术语表达、理解“单价、速度”的概念,掌握用符合单位表示“单价、速度”的方法。
三、教学准备
课件
四、教学过程
(一)具体情境导入
1.出示教材52页例4、53页例5
师:在前面的学习中,我们经常会见到一些数量关系。
学生独立解答
2.引入课题:
看来大家对我们学习的知识已经基本掌握了,今天我们就来总结这两种常见的数量关系。(板书课题)
【设计意图】学生已经会解决实际中关于单价、数量、总价,速度、时间、路程的问题,通过解决例4、5,唤起学生对此类问题的回顾,激发起学生探究知识的欲望。
(二)探究新知
1.认识单价、数量、总价,概括“单价×数量=总价”
(1)
师:这两个问题有什么共同点?
生1:都是已知每件商品的价钱。
生2:还知道买了多少件商品,算共花的钱数。
(2)出示发票:
师:你能从这张发票中看出光明小学的购物情况吗?
(学生分别从数量栏、单价栏、金额栏、货物名称栏了解购物结果。)
①认识理解“单价”。
师:看来发票里包含了许多的数学知识。你知道发票中的“单价”是什么意思吗?(板书:单价)
师:是的,每件商品的价格就是它的单价,你还知道哪些物品的单价?(学生介绍学习用品类、服饰类、食品类的物品单价)
师:发票中的2000元表示什么意思?(板书:总价)
②说一说,算一算。
师:出示问题:
橙汁每瓶4元,一箱12瓶共多少元?
每箱橙汁40元,200元可以买这样的几箱?
200元可以买5箱橙汁,每箱橙汁多少元?
已知( )和( ),求( )。数量关系式为( ),算式( )。
学生独立练习
生汇报、交流。
生:讨论并发现验证:单价×数量=总价,总价÷单价=数量,总价÷数量=单价。补充完整板书。
【设计意图】从学生已有的知识和经验出发,通过学生自己质疑、释疑认识单价、数量、总价,并初步感知单价、数量、总价之间的关系。积累有关单价、数量、总价丰富感知。
2.认识速度、时间、路程,概括“速度×时间=路程
(1)
师:这两个问题有什么共同点?
生1:都是已知每小时或每分钟行的路。
生2:还知道行了几小时或几分钟,算共行了多少千米
(2)联系实际,认识速度
师:生活中这样的例子很多,下面我们一起来感受一下物体的速度。(课件出示)
蜗牛爬行的速度大约是8米/时。
人步行的速度大约为4千米/时。
声音传播的速度大约为340米/秒。
光传播的速度大约为30万千米/秒。
师:我们把这样,每小时或每分行的路程叫做速度。
人步行的.速度是4千米/时,(板书:4千米/时)观察表示速度的单位,是由哪些我们学过的单位组成的?
生:速度的单位是由路程单位和时间单位组成的。
师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作4千米每时。
你知道4千米/时表示什么吗?
生:24千米/时表示人1小时大约走4千米。
师:你能像这样写出并读出蜗牛、声音传播、光传播的速度吗?
【设计意图】出示生活中常见的速度,拓展学生对日常生活中速度的认识,通过实例和交流,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养了学生收集、处理信息的能力和获取知识的能力。并且加深了学生运用所学知识解决生活中的问题的意识。
(3)经历公式形成的过程。
师:那么怎样求速度?
生:路程÷时间=速度
师:请写出下面各物体的速度
①一列火车2时行驶180千米,这列火车的速度是_________
②自行车3分钟行驶600米,这辆自行车的速度是_________
③一名运动员8秒跑了80米,这名运动员的速度是________
生:这列火车的速度是90千米/时,这辆自行车的速度是200米/分,这名运动员的速度是10米/秒。
(4)理解单位时间,理解速度的意义。
师:观察这三组速度,他们都是多长时间行驶的路程?
生:他们都是一时、一分、一秒行驶的路程。
师:对,我们把这样的一时、一分、一秒都称为单位时间。你现在能来试着说一说什么是速度吗?
生:在单位时间里行驶的路程就叫速度。
【设计意图】路程、时间与速度这三个相关联的量,学生原来只能模糊地感知,不能清晰地表达,所以,我通过提问:速度单位与我们学过的单位有什么不同?剖析出速度的单位是由长度单位和时间单位共同组成的,帮助学生进一步理解速度的含义,通过观察和比较几个速度单位的相同和不同之处,既形象地帮助学生建立概念,又理解了速度的概念,知道速度是单位时间内所行驶的长度,这样就架构起行程问题中三个数量之间联系的桥梁。
(5)经历公式形成的过程。
师:解决下面的问题。
甲乙两地有240千米,一辆汽车的行驶速度为60千米/时,从甲地到乙地行驶了4小时。
①60×4表示什么?
②240÷4表示什么?
③240÷60表示什么?
已知( )和( ),求( )。数量关系式为( )。
生2:这两道题都是知道了速度和时间,求路程。
师:怎样求路程?
生:速度×时间=路程
师:猜测一下怎样求时间?为什么这样猜?
生:路程÷速度=时间,我认为根据速度×时间=路程,知道了积和一个因数,求另一个因数用除法计算。
师:同学们猜测得到底对不对,想来验证一下吗?计算第(2)、(3)题,说说你有什么发现?
生:我发现了这两道题都是已知路程和速度,求时间,用路程÷速度=时间,证明我们的猜测是正确的。
【设计意图】在学生充分理解路程、时间与速度这三个量的基础上,提出问题:这些量之间的关系是什么?根据学生的回答,让他们经历猜测和验证的过程。在这个教学重点环节里,我留给学生充分的时间探究,通过小组讨论总结、归纳数量关系,围绕“总结---归纳”二个环节进行学法指导,帮助学生深刻领会路程、时间与速度之间的密切联系。
(三)实际运用
1.他会超速吗?带有这个标志的路共长140千米,张叔叔驾车想花2小时开完这一段路。
师:你怎么理解限速60千米/时?你想对张叔叔说些什么?
2.客车的平均速度是80千米/时,它行7小时能否到上海?你能想出几种方法来解决?
生1:比路程。
生2:比速度。
生3:比时间。
3.小丽去文具店买文具,不小心把购物发票弄脏了,你能帮她算出笔记本每本多少元吗?
学生独立解答。
【设计意图】通过解决实际问题的练习,鼓励学生联系已有知识,寻求不同的解决方法,发展学生的数学思维能力。
(四)回顾梳理
本堂课我们学习了什么知识?你有什么收获?
【设计意图】通过师生共同梳理,让学生对两种常见的数量关系有系统的认识。
【《积的变化规律》教学设计】相关文章:
《积的变化规律》教学设计02-08
积的变化规律教学设计03-24
积的变化规律教学设计11-24
《积的变化规律》的教学设计12-19
《积的变化规律》教学设计(3篇)02-24
积的变化规律教学设计(精选14篇)06-30
《积的变化规律》教学反思01-07
《积的变化规律》教学反思07-13
积的变化规律的教学反思11-18