教学目标:
1.了解三元一次方程组的概念.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点:
(1)使学生会解简单的三元一次方程组
(2)通过本节学习,进一步体会“消元”的基本思想.
教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.
教学过程:
一、创设情景,导入新课
前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?
【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?
【列表分析】
(三个量关系) 每张面值 × 张数 = 钱数
1元 x x
2元 y 2y
5元 z 5z
合 计 12 22
注 1元纸币的数量是2元纸币数量的4倍,即x=4y
解:(学生叙述个人想法,教师板书)
设1元,2元,5元的张数为x张,y张,z张.
根据题意列方程组为:
【得出定义】 (师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)
例1 .解方程组
分析1:发现三个方程中x的'系数都是1,因此确定用减法“消x”.
分析2:方程③是关于x的表达式,确定“消x”的目标.
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:
类型一:有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组
类型二:缺某元,消某元.
教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.
三、课堂小结
1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组 二元一次方程组 一元一次方程
2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.
四、布置作业
1. 解方程组 你能有多少种方法求解它?
【三元一次方程组解法教学设计优秀】相关文章:
方程组的解法教学设计11-25
三元一次方程组的解法09-13
三元一次方程组的解法教学反思04-24
课文《三元一次方程组的解法》教学反思11-24
课文《三元一次方程组的解法》教学反思范文02-11
初中代数二元一次方程组的解法教学设计12-30
二元一次方程组的解法教学反思11-24