一、教学内容
1.四边形、平行四边形的认识
2.周长的概念,长方形、正方形的周长计算
3.长度的估计
二、教学目标
1.使学生认识四边形的特征,初步认识平行四边形,会用不同的方式表示平行四边形。
2.使学生了解周长的概念,会计算长方形、正方形的周长。
3.通过对长度和周长的估计,培养学生的长度观念。
三、编排特点
1.从日常生活中引入几何概念,使学生在熟悉的情境中学习几何知识。
利用校园的情境认识四边形和平行四边形。利用学生熟悉的事物(树叶、教科书、小国旗、钟面)来认识和计算周长。
2.利用活动巩固对几何概念的认识。
教材中设计了各种形式的活动:涂色、分类、拉一拉平行四边形、在钉子板上围平行四边形、在方格纸上画平行四边形、用长方形纸剪平行四边形、用七巧板拼图、实际测量一个物体的周长,等等。这也是由几何知识的直观操作性决定的。
3.周长的概念更强调从一般性的角度引入,体现知识的形成过程。
从任意图形(包括不规则图形)入手,使学生体会到周长是一个一般概念,避免学生产生只有长方形、正方形、圆等规则图形才能求周长的思维定势。此外,通过对一般图形周长求法的探索,使学生经历长、正方形周长求法的知识形成过程。
四、具体编排
(一)四边形和平行四边形的认识
1.主题图
提供了一个校园的场景,图中有很多几何图形,其中包括很多四边形,如学校大门的推拉门上有平行四边形,人行道上有长方形、正方形、平行四边形、菱形,篮球场是一个长方形、篮板是一个长方形,篮板上有一个长方形的框、羽毛球场地上有很多长方形、足球门上有长方形、梯形,远处教学楼的楼梯上有平行四边形、窗户是长方形的。教学时,要让学生充分进行观察。有些名词,如平行四边形、梯形、菱形虽然没学过,但如果学生有这方面的知识,教师要给予肯定。通过观察主题图,可以看到生活中有各种四边形。
2.例1(认识四边形)
让学生把自己认为是四边形的图形涂上颜色,从而让学生通过讨论,找出四边形的特征:有四条直的边和四个角。由于学生已经有了认识长、正方形的基础,可以利用长、正方形的边和角的特征归纳四边形的特征。这也是合情推理(归纳)的一种体现。
可能有的学生一开始认为第三行第二个图形也是四边形,认识了四边形的这两个特征以后,就能正确地判断了。
通过本例,学生对小学阶段出现的各种特殊四边形乃至一般四边形都有一个感性的认识,在以后的学习中将逐一认识。
3.例2(对四边形分类)
(1)例1的目的是把四边形从其他图形中区别出来,例2是在四边形内部进行分类。
(2)教材上给出了三种分类结果:
A.长方形、正方形是一类,其他是一类。(突出了长方形、正方形四个角的特征。)
B.长方形、正方形、平行四边形、菱形是一类,梯形是一类。(突出所有平行四边形两组对边分别平行且相等的特征。)
C.长方形是一类,正方形和菱形是一类,平行四边形是一类,梯形是一类。(把第二种分法进一步细分,突出正方形和菱形四边相等的特征。)
(3)鼓励学生发现更多的分法,但是一定要注意让学生说出分的理由来。(如把平行四边形分成矩形和一般平行四边形两类,或分成邻边不相等的和菱形两类。)
(4)通过本例,可以进一步感性地认识和区别各种四边形的'特征。
4.“做一做”
第1题,让学生发现生活中的四边形,可以体会生活中处处有数学。
第2题,让学生通过在钉子板上围不同的四边形,可以进一步体会平行四边形两组对边分别平行、矩形四个角是直角等特征。
5.平行四边形的认识及下面的“做一做”
(1)在前面认识四边形时,学生已经见过平行四边形,这儿是单独对它进行初步的认识。
(2)通过校园里楼梯上和伸缩门上的平行四边形使学生直观认识平行四边形的特征,并引导学生通过思考小精灵提出的问题“为什么这样的门能伸缩?”去发现平行四边形易变形的特点(变形后仍是平行四边形)。
(3)下面的“做一做”实际上就是对例1问题的回答。通过实验使学生发现,三角形具有稳定性,而平行四边形具有可变性,如果把平行四边形的对角线固定,转化成两个三角形,就稳定了。在教学平行四边形的这一特性时,可以借助于生活中当椅子发生前后左右晃动时,只要在凳子腿上斜着钉一根木条就固定的例子,让学生思考为什么要这样做。
6.围、画、剪平行四边形
(1)前面已经直观认识平行四边形,在这儿也不对平行四边形下定义,只要求学生在钉子板上围出来,然后让学生观察围出的平行四边形,说一说它的边有什么特征,使学生明确平行四边形的对边相等。
(2)画平行四边形比围平行四边形稍难,要让学生结合围平行四边形的过程来想应该怎样画。(首先确定一个顶点,再任意画出一条边,然后任意画出相邻的边,这样就确定了三个顶点,最后一个顶点就不能任意画了,要使两组对边分别平行相等。)
(3)用一张长方形纸剪一个平行四边形的方法很多,教材上只提供了两种,教学时要鼓励学生创造出更多的剪法来,而且要保证剪出来的是严格意义上的平行四边形,不能仅凭感觉剪出来像平行四边形就可以了。
7.练习九
第3题,改平行四边形的方法很多,体现开放性。
第4题,让学生通过测量、比较探讨长方形、正方形、平行四边形的边、角的特征。但只是初步的描述,以后还要学习更数学化的表述。
(二)周长
1.例1(概念)
(1)给出一组实物和一组几何图形,实物有不规则的,有规则的。但这些实物和几何图形有一个共同点:都是封闭图形。
(2)用描述性的的语言来定义周长。
(3)让学生用自己的方法测量不同物体和图形的周长,有的是拿绳子把物体围一圈,再量绳子的长度,有的是分别测量物体的各条边的长度,再相加。体现了知识的形成过程,为求长、正方形的周长做准备。
2.例2(长方形的周长)
体现了周长计算方法的多样性。但在这儿没有总结出(长+宽)×2的公式,学生只要理解了周长的涵义并会计算就可以了。
3.“做一做”第2题
可以看作实践活动的一种形式,开放性很大,选取的物品表面可以是规则的,也可以不规则,采取的方法也是开放的,可以直接测量,也可以先量再计算。
4.例3(正方形的周长)
编排方式同例2。
5.“做一做”第2题
解决的方式多样,可以看作一个新的2×1的长方形,也可以先算出两个小正方形的周长,再减去重合的两条边的长。
6.练习十
第3、4题都是实际操作的题目,体现开放性。其中第3题还可以让学生感受一下周长的实际应用,如做衣服时要知道胸围和腰围。
(三)长度的估计
对长度的估计不是一节课上就能完成的任务,需要在日常生活中经常估计,逐步培养起正确的长度观念。
1.例4
凭感觉画出8厘米的线段,完全依靠平时积累的长度的表象。画完后再用尺量一量,帮助学生重新建立正确的长度表象,培养估计的能力。
2.例5(对周长的估计)
涉及到对铅笔盒长、宽的估计,周长的估算,对彩纸长度的估计。估计完了以后,可以让学生实际测量、计算一下,建立正确的长度观念,修正自己的估计策略。
3.“做一做”
第2题,可以先让学生估计哪条路线近些,哪条路线远些,再运用数学知识精确地判断一下(两点之间直线段最短)。有两条路线是同样长的,要让学生说一说为什么。
第3题,让学生运用生活经验估计一下,可以直接估计,也可以先估计出一个人的臂展,再估算出5个同学拉成一圈的周长。第2小题也是同样。
4.练习十一
第2题,利用长度在水平方向和竖直方向给人的不同感觉,让学生先进行估计。然后,可以让学生实际测量一下
第3题,在解决实际问题时,要根据实际情况调整计算策略。当长方形的一面靠墙以后,首先要从图上判断是哪一面靠墙,再计算。计算时,可以直接把其他三边长度相加,也可以用计算出来的周长减去该边长度。
第4题,由于学生还没学习24÷2,所以在这儿还不能要求学生用周长的逆运算来解决。可以让学生通过尝试的方法来解决,如可以先确定一条边的长,如1厘米,再看另外一边,通过数格子的方法来解决。学生通过探究围出一个长方形后,可以启发学生有规律地围出其他图形(一边增加1厘米,另一边减少1厘米)。
第5题,也是一个实践活动的题目。
五、教学建议
1.选取生活中学生熟悉的素材来帮助学生学习几何知识。
可以根据实际情况,创造性地使用教材,要注重学生已有的生活经验和知识基础,把课堂拓展到生活空间中去,并引导他们观察生活,从现实世界中发现空间与图形的素材。例如,可以看看教室里有哪些四边形。
2.开展形式多样的实践活动,引导学生自主探索,合作交流。
几何知识的学习要借助于直观的观察、操作等手段,如平行四边形,要通过观察、画一画、围一围、剪一剪的方式来帮助学生认识。
对于一般图形的周长的探索,有助于学生体验知识的形成过程。
长度观念的建立,首先是脑中要有某个长度的表象,而这个表象的建立要借助大量的观察和测量等过程来逐步建立。
3.把握好教学要求。
在这儿只是让学生直观认识平行四边形,至于平行四边形的特征,以后还要进一步学习。长、正方形周长的计算也只是会计算即可,不要求用公式来表示。
【三年级数学《四边形》教学设计】相关文章:
《四边形》教学设计08-21
《四边形》教学设计02-11
三年级数学上册《四边形》教学设计01-12
《四边形》数学教学反思06-20
《认识四边形》教学设计07-23
《四边形》教学设计与评析08-14
四边形的认识 教学设计10-01
关于四边形的教学设计02-11
“中点四边形”教学设计04-03