教学过程:
一、导入新课
师:请看一看,你们的数学课本是多少钱?如果要买一本数学课本和一本数学课外读物一共要多少钱?
学生可能会问数学课外读物的价钱是多少,或不回答,这时教师指出:既然不知道数学课外读物的价钱,能否用一个字母表示?
现在谁能说出一本数学书和一本数学课外读物一共要多少钱?
再请学生回答:5.35+x表示的是什么?
师:这个含有字母的式子也能表示数量,今天我们就来探讨这个问题。
板书课题:用含有字母的式子表示数量。
二、教学新课
1.学习例4第(1)题。
可从本班学生的实际情况中选取题材,如老师比××同学大25岁,××同学的年龄比他爸爸年龄小30岁等。
师:如果我告诉你们,我比陈敏大25岁,请算一算,陈敏同学在1岁、2岁、3岁……到现在11岁时,老师各是多少岁。随着学生回答,教师板书如下:
陈敏的年龄(岁)老师的年龄(岁)
1 1+25=26
2 2+25=27
请一名学生在黑板上接着写下去,其他学生在草稿本上写。
学生在写的过程中感到厌烦。
师:求老师岁数的问题提完了吗?(没有)为什么?
学生会说因为陈敏在不断地长大,陈敏的岁数每增加一岁,老师的岁数也增加一岁。
师:正因为我们的问题还没提完,所以还应该在这些算式后面打上省略号。(教师板书省略号)
师:虽然陈敏和老师的岁数都在变化,但是什么没有变?(老师比陈敏大25岁)
师:我们已经学习了用字母表示数,能不能用一个简明的式子表示老师的岁数呢?
用字母a表示陈敏的岁数,那么老师的岁数就是a+25(用其他字母表示也可以)。
在陈敏和老师的岁数下面接着板书:a与a+25。
师:从a+25这个式子里,你们知道些什么信息?
学生同桌议论或小组讨论,然后交流汇报:
a+25既表明了老师的岁数,又表明了“老师比陈敏大25岁”这个数量关系,所以,我们只要知道陈敏的岁数a,就能用这个数量关系算出老师的岁数。
师:对,只要知道了陈敏任意一个岁数,就可以求出老师的岁数,我们可以试一试。如果陈敏7岁入学,老师几岁?
学生回答,教师板书:当a=7时,a+25=7+25=32
师:当陈敏19岁考入大学,老师几岁?
学生回答,教师板书:当a=19时,a+25=19+25=44
师:刚才我们学习了用含有字母的式子表示数量,它有什么优点?
2.教学例4第(2)题。
出示:在月球上,人能举起物体的质量是地面上的6倍。
读题,引导学生按下面的过程自己推算,并填写下表。
师:这里的`x表示什么?你是怎样理解6x的?
师:那么课本插图中的小朋友在月球上能举起的质量是多少?
学生计算后交流,教师板书:6x=6×15=90(kg)
让学生看课本第47~48页,再说一说第(1)题、第(2)题中的字母分别可以表示哪些数?
师:但是要注意的是人的寿命是有限的,能举起的质量也是有限的,因此a、x表示的数也是有限的。
3.应用所学知识解决实际问题。
师:成年男子与女子的标准体重通常可以用下面的式子表示,身高用厘米数,体重用千克数。出示:
成年男子的标准体重=身高-105
成年女子的标准体重=身高-110
用含有字母的式子表示成年男子或成年女子的标准体重。
教师告诉学生自己的身高,让学生选择一个式子,算出教师的标准体重,再告诉学生教师的实际体重,与计算结果比较,评价教师的实际体重是否符合标准。(教师提示:与标准体重相差2千克之内都属于正常范围)
师:回去后可以根据这两个式子测算一下你爸爸、妈妈的标准体重各是多少。
让学生说说学习体会。
师:从这几个问题可以看出,用字母表示一些不确定的数量,可以很方便地帮助我们根据实际情况解决问题。
三、巩固练习
1. 练习十第4题。(填写在课本上,独立完成后集体核对)
2. 练习十第5题。(先独立思考,再填写在课本上,教师巡视指导有困难的学生,完成后交流)
3. 练习十第8题。先同桌互相说出三小题中字母或式子所表示的含义,再全班交流。
四、课堂小结
教学内容:教科书第47~48页,练习十第4~8题。
教学目标:
1.在理解数量关系的基础上,会用含有字母的式子表示数量。
2.在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母式子的值。
3.培养学生的抽象思维能力、归纳概括能力。
【用含有字母的式子表示数量教学设计】相关文章:
《用含有字母的式子表示数量》优秀教学设计02-02
用含有字母的式子表示数量的教案10-12
《用含有字母的式子表示数量》教案08-30
《用含有字母的式子表示数量》教案范文12-02
《用字母表示数量关系》教学反思09-10
《用字母表示数量关系》教学反思范文07-03
字母表示数教学设计02-03