一、教学目标
(一)知识与技能
通过观察多组由小立方体拼成的几何形体,能正确辨认从不同方位观察到的形状和相对位置,并发现不同几何体从同一方向看到的形状可能是相同的,也可能是不同的。
(二)过程与方法
经历观察、想象、拼摆、验证的过程,体验从同一角度观察不同物体的结果,培养学生的空间观念和推理能力。
(三)情感态度和价值观
激发学生学习数学的兴趣,培养学生的合作意识,感受数学情况的变化性和多样性。
二、教学重难点
教学重点、难点:发现不同几何体从同一方向看到的形状可能是相同的,也可能是不同的。
三、教学准备
课件、正方体模型、方格纸
四、教学过程
(一)复习引入
1.师:同学们你们听说过手影游戏吗?人们用灵巧的双手能够变换出很多活灵活现的影像。让我们欣赏一下。
2.师:在刚才的视频里,你们观察到什么变了,什么不变?
预设:
生:人的手没变,影子的形状变了。
3.师:你知道吗?在对图形观察的过程中,也会存在类似这种的变与不变的现象。今天我们就从这个角度来研究对物体的观察。(板书:观察物体)
【设计意图】从学生喜闻乐见的游戏活动入手,根据学生已有的知识和经验明确研究主题。激发学生研究兴趣的同时,明确学习的目标。
(二)探索新知
1.师:上节课我们一起观察了这个由四个小正方体搭成的立体图形,其实搭建的方法还有很多,你们想不想自己也来试试?
出示图形:
2.活动建议:
(1)用4个小正方体搭出一个立体图形,
(2)想象从不同方向看到的形状并在纸上摆出来。
(3)观察立体图形,验证想象的结果。
(强调:只摆一个立体图形观察)
3.学生活动,师巡视调样。
4.师:哪组愿意把你们的作品到前面来展示?
预设:
第一组展示:
(1)师:他们组摆了一个这样的立体图形(黑板贴图),他们摆的和观察到的形状一样吗?
(2)师:请大家观察一下,这些从不同方向看得到的形状有什么特点吗?
预设:
生:从正面看和从左面看相同。
(3)师:前面我们发现“从不同的方向观察一个立体图形,所看到的形状是不同的'。”
(4)通过观察这个立体图形,你又有什么新想法呀?
预设:
生:从不同的方向观察一个立体图形,所看到的形状也可能是相同的。
第二组展示:
(1)师:还有哪组愿意展示一下你们的作品?
(2)问:这个立体图形,检验一下,他们摆的和观察到的形状一样吗?
(3)师:比较一下这两组的观察结果,又有什么新的发现吗?
预设:
生:不同形状的立体图形从同一方向进行观察,所看到的形状可能不同,也可能相同。
5.同时出示三组图形
(1)师:为什么不同形状的立体图形从同一方向进行观察,所看到的形状可能相同呢?
(2)师:这3个物体,从哪面看到的形状相同?从哪面看到的形状不同?怎样可以快速判断?
6.学生分组讨论
7.交流信息
预设:
生:看三个物体的长、宽、高,对应两个数据相等时,从对应角度观察才有可能相等。
8.师:我们还有很多种拼摆的方式,是不是也会有这种现象呢?我们来看一看。
(展示其他方案,应用观察方法对比)
【设计意图】美国教育家杜威曾经说过,学生的学习只有亲历其中才能够更好的理解和掌握。通过学生自主地研究,利用现实生成的素材,可以让学生的认识更加深刻,发现更能够被普遍接受。
(三)巩固练习
P14做一做
这3个物体,从哪面看到的形状相同?从哪面看到的形状不同?
(1)学生独立解决问题
(2)集体交流结果:
预设:
生:这3个物体从左面和上面看到的形状是相同的,从正面看到的形状是不同的。
(3)实物验证并说明方法的正确性
【设计意图】适当的巩固练习,有助于学生对于方法的掌握,积累数学活动经验,形成数学模型。
(四)提炼升华
1.同学们,通过今天的研究你有什么收获吗?
预设:
生:要全面观察
2.师:是呀,观察要全面!请看屏幕,看到这张图片你有什么感受?
3.师:如果我们换个角度再来看看,你又有什么发现?
总结:人生的起起落落、浮浮沉沉是难免的。对不同的生活际遇,我们应以乐观、豁达的态度来看待。时候换个角度看,你会发现,人生原有另一番滋味,另一道风景。正如清·钱泳《履园丛话·水学·三江》:“大凡治事必需通观全局,不可执一面论。”
【设计意图】英国著名数学家哈代在《一个数学家的辩白》中写到:“数学家的造型与画家和诗人的造型一样,必须美;数学的美很难定义,但它却像任何形式的美一样真实。”数学作为一门基础性学科,其应用范围非常广泛。在课中教师引导学生对全面观察认识已经不仅仅局限在数学,而是将其上升到哲学世界观的高度,这是一种“大数学观”的体现。