一、问题的情景:
1. 出示邮票。问:你能同样大小的把它画在图纸上吗?
让同学们画一画,再拿出邮票的长,比一比,怎么样?
归纳:(同样长)得:图上的长和实际的长的比是1:1。
2. 教室的长是9米,你能同样长的`画在图纸上吗?更大一些呢?
如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?
3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?
4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。
板书:比例尺
二、问题解决:
5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。
6. 小组回报设计方案,教师选择以下四种方案。
(1).用9厘米表示9米
(2).用4.5厘米表示9米
(3).用3厘米表示9米
(4).用1厘米表示9米
7. 说说以上方案是图上距离比实际距离缩小了多少倍?
算一算,每幅图 图上距离和实际距离的比。
(1).9厘米?9米=9?900=1?100
(2).4.5厘米?9米=4.5?900=1?200
(3).3厘米?9米=3?900=1?300
(4).1厘米?9米=1?900
8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。
齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。
比例尺怎样求:(看上述四个比例式得出):
图上距离?实际距离=比例尺 或 图上距离
实际距离
9. 讨论汇报:上面四幅图,比例尺是多少图最大?
比例尺是多少图再小?为什么?
10. 练习:
(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。
(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。
(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?
(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?
(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?
上述四题分层练习,后讲评。
11. 比较(3)、(4)两题的比例尺有什么不同?
教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。
12. 比例尺有多少种表示方法?让生说一说
(常见的有:比的形式 分数的形式 线段形式)
【六年级数学比例尺的应用教学设计】相关文章:
《比例尺的应用》的教学设计06-12
《比例尺的意义及应用》教学设计05-18
数学《比例尺》教学设计范文04-19
比例尺的应用优秀教学设计(精选7篇)04-29
苏教版小学数学《比例尺》教学设计08-31
比例尺的应用教学课件03-29
《比例尺的应用》教学反思08-26
数学比的应用教学设计06-12
《比例尺》教学设计08-25