高二数学教学设计:平面直角坐标系与伸缩变换

2021-06-14 教学设计

  一、三维目标

  1、知识与技能:回顾在平面直角坐标系中刻画点的位置的方法

  2、能力与与方法:体会坐标系的作用

  3、情感态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二、学习重点难点

  1、教学重点:体会直角坐标系的作用

  2、教学难点:能够建立适当的直角坐标系,解决数学问题

  三、学法指导:自主、合作、探究

  四、知识链接

  问题1:如何刻画一个几何图形的位置?

  问题2:如何研究曲线与方程间的关系?

  五、学习过程

  一.平面直角坐标系的建立

  某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚了4s。已知各观测点到中心的距离是1020m,试确定巨响发生的位置(假定声音传播的速度是340m/s,各观测点均在同一平面上)

  问题1:

  思考1:问题1:用什么方法描述发生的位置?

  思考2:怎样建立直角坐标系才有利于我们解决问题?

  问题2:还可以怎样描述点P的位置?

  B例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。

  探究:你能建立不同的`直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?

  小结:选择适当坐标系的一些规则:

  如果图形有对称中心,可以选对称中心为坐标原点

  如果图形有对称轴,可以选对称轴为坐标轴

  使图形上的特殊点尽可能多地在坐标轴上

  二.平面直角坐标系中的伸缩变换

  思考1:怎样由正弦曲线y=sinx得到曲线y=sin2x?

  坐标压缩变换:

  设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来 1/2,得到点P(x,y).坐标对应关系为: 通常把上式叫做平面直角坐标系中的一个压缩变换。

  思考2:怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。

  设P(x,y)是平面直角坐标系中任意一点,保持横坐标x不变,将纵坐标y伸长为原来 3倍,得到点P(x,y).坐标对应关系为: 通常把上式叫做平面直角坐标系中的一个伸长变换。

  思考3:怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写出其坐标变换。

  定义:设P(x,y)是平面直角坐标系中任意一点,在变换 的作用下,点P(x,y)对应P(x,y).称 为平面直角坐标系中的伸缩变换。

  六、达标检测

  A1.求下列点经过伸缩变换 后的点的坐标:

  (1) (1,2);

  (2) (-2,-1)

  A2.点 经过伸缩变换 后的点的坐标是(-2,6),则 , ;

  A3.将点(2,3)变成点(3,2)的伸缩变换是( )

  A. B. C. D.

  A4.将直线 变成直线 的伸缩变换是 .

  B5.为了得到函数 的图像,只需将函数 的图像上所有的点( )

  A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍(纵坐标不变)

  B.向右平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍(纵坐标不变)

  C.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)

  D.向右平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)

  B6.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换 后的图形:

  (1) ;

  B8.教材P8 习题1.1 第4,5,6

【高二数学教学设计:平面直角坐标系与伸缩变换】相关文章:

关于平面直角坐标系教学设计06-05

最新《6.1.2平面直角坐标系》教学设计11-25

平面直角坐标系的教学反思06-17

《平面直角坐标系》的教学反思10-10

《平面直角坐标系》教学反思06-15

初中数学《平面直角坐标系》的教案08-25

数学平面直角坐标系的构成与要素09-10

初中数学《平面直角坐标系》的教案06-17

《平面直角坐标系》的教学反思范文07-01