教学目的:
1、使学生会推导平方差公式,并掌握公式特征。
2、使学生能正确而熟练地运用平方差公式进行计算。
教学重点:
使学生会推导平方差公式,掌握公式特征,并能正确而熟
练地运用平方差公式进行计算。
教学难点:
掌握平方差公式的特征,并能正确而熟练地运用它进行计算。
教学过程:
一、复习引入
1、复述多项式与多项式的'乘法法则
2、计算 (演板)
(1)(a+b)(a-b) (2)(m+n)(m-n)
(3)(x+y)(x-y) (4)(2a+3b)(2a-3b)
3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)
二、新课
1、平方差公式
由上面的运算,再让学生探究
现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗? 引导学生把2m看成a,3n看成b写出结果.
(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2
(a + b)(a - b)= a2 - b2
向学生说明:我们把
(a+b)(a-b)=a2- b2 (重点强调公式特征)
叫做平方差公式,也就是:
两个数的和与这两个数的差等于这两个数的平方差.
3、练习:判断下列式子哪些能用平方差公计算。(小黑板)
(1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)
(3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)
2、教学例1
(1)(2x+1)(2x-1); (2) (x+2y)(x-2y)
(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。
(3)具体解题过程:板书,同教材,略
3、教学例2 例3
先引导学生分析后指名学生演板,略
4、练习:课本P110 1(指名演板) 2、(口答)3、演板
三、巩固练习:(小黑板)
1、填空:(1)(x+3)(x-3)=__________ (2)(-1-2x)(2x-1)=______
(3)(-1-2x)(-2x+1)=_____________ (4)(m+n)( )=n2-m2
(5)( )(-x-1)=1-x2 (6)( )(a-1)=1-a2
2、选择题
(1) 下列可以用平方差公式计算的是( )
A、(2a-3b)(-2a+3b) B、(- 4b-3a)(-3a+4b)
C、(a-b)(b-a) D、(2x-y) (2y+x)
(2)下列式子中,计算结果是4x2-9y2的是( )
A、(2x-3y)2 B、(2x+3y)(2x-3y)
C、(-2x+3y)2 D、(3y+2x)(3y-2x)
(3)计算(b+2a)(2a-b)的结果是( )
A、4a2- b2 B、b2- 4a2&
【平方差公式教学课件】相关文章:
《平方差公式》优质教学设计03-15
完全平方公式的教案课件05-09
《用乘法公式分解因式》PPT课件05-13
诱导公式教学反思 04-26
倍角公式教学反思04-27
倍角公式教学反思05-06
《乞巧》教学课件06-25
《绝招》课件教学02-20
教学设计课件02-17
a拼音教学课件04-11