高三数学教学工作计划

2022-05-24 教学计划

  时间过得可真快,从来都不等人,我们又将迎来新的喜悦、新的收获,此时此刻需要制定一个详细的计划了。计划怎么写才不会流于形式呢?以下是小编为大家整理的高三数学教学工作计划4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

高三数学教学工作计划 篇1

  一、指导思想

  今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。高三理科数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。提高学生的学习能力仍是我们的奋斗目标。近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

  二、注意事项

  1.高度重视基础知识,基本技能和基本方法的复习。

  “基础知识,基本技能和基本方法”是高考复习的重点。我们希望在复习课中要认真落实“基础练习”,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养。特别是要学会把基础知识放在新情景中去分析,应用。

  2.高中的‘重点知识’在复习中要保持较大的比重和必要的深度。

  原来的重点内容函数、不等式、数列、向量、立体几何,平面三角及解析几何中的综合问题等。在教学中,要避免重复及简单的操练。新增的内容:算法、概率等内容在复习时也应引起我们的足够重视。总之高三的数学复习课要以培养逻辑思维能力为核心,加强运算能力为主体进行复习。

  3.重视‘通性、通法’的落实。

  要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。

  4.认真学习,研究近三年的高考试题,提高复习课的效率。

  《考试说明》是命题的依据,复习的依据。高考试题是《考试说明》的具体体现。只有研究近年来的考试试题,才能加深对《考试说明》的理解,找到我们与命题专家在认识《考试说明》上的差距。并力求在二轮复习中缩小这一差距,更好地指导我们的复习。

  5.渗透数学思想方法,培养数学学科能力。

  《考试说明》明确指出要考查数学思想方法,要加强学科能力的考查。我们在复习中要加强数学思想方法的复习,如转化与化归的思想、函数与方程的思想、分类讨论的思想、数形结合的思想。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。

  6.二轮复习课中注意新的目标定位。

  ①培养学生搜集和处理信息的能力;

  ②激发学生的创新精神;

  ③培养学生在学习过程中的的合作精神;

  ④激活显示各科知识的储存,尝试相关知识的灵活应用及综合应用。

  三、知识和能力要求

  1.知识要求

  对知识的要求由低到高分为三个层次,依次是知道和感知、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。

  (1)感知和了解:要求对所学知识的含义有初步的了解和感性的'认识或初步的理解,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。

  (2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单的变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。

  (3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。

  2.能力要求

  能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。

  (1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷运算途径。

  (2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。

  (3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。

  (4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

  (5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性。

  (6)应用意识和实践能力:能够对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题。

  (7)创新意识和能力:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,提出问题、分析问题和解决问题。

高三数学教学工作计划 篇2

  一、学生情况

  数学与应用数学专业本科071班学生已学习数学分析、高等代数等课程,具有比较扎实的数学基础。

  二、教材特点

  教材是闵嗣鹤、严士健编的《初等数论》(第三版,高等教育出版社,20xx年)。该书共有9章,即:第一章是整数的可除性;第二章是不定方程;第三章到第五章是同余,同余式,以及二次同余式与平方剩余;第六章是原根与指标;第七章是连分数;第八章是代数数与超越数;第九章是数论函数等。内容比较丰富,供教学时数为每周4节共72节的教学之用。本课程教学时数共36节,所以只选出与中学数学有密切联系的最基础的内容进行讲授。

  教 学 改 革 措 施

  (针对学生与教材的特点,拟订出相应的教改措施)

  1、讲清基本概念、基本定理和基本方法;

  2、精讲教学内容,只选出与中学数学有密切联系的最基础的内容进行讲授,重视学生解题训练,加强学生的作业指导;

  3、注意运用各种教学原则、教学策略和方法,启迪学生思维;

  4、重视数学思想方法的教学和数学能力的培养。

  5、补充一些有关数论的数学竞赛题目,开拓学生祝福视野,注意培养学生数学学习兴趣。

高三数学教学工作计划 篇3

  风险与决策将作为高中课程标准中选修系列4的一个专题,课时为18学时.开设这个专题的必要性不言而喻,因此这一专题采用适当的教学方案,将会使学生亲身体会数学来源于生产和生活,数学是人们生活、劳动和学习必不可少的工具,能够帮助人们推理、处理数据,能有效地描述自然现象和社会现象.数学是人类的一种文化,它是现代文明的重要组成部分.

  本文对这一专题设计一种教学方案,这仅是我的设想,教学收效如何还应当由实践检验.我把这一专题的教学分成三个阶段,最后还对本专题学习的评价作了探讨.学习的三个阶段依次如下:

  1 组织学生开展身边“风险”事例的调查与收集

  首先让学生考察体会现实生产和生活的存在的各种风险,让学生作调查,启发学生从工农业生产、交通运输、资本运营、金融保险等社会生活的各方面收集有关资料.通过这一活动,能使学生亲身体会到数学与现实生活息息相关,数学问题来源于现实生活,从而激发他们学习研究数学的兴趣.在收集调查基础上,组织学生进行交流讨论,能使得学生能够更多地了解身边存在的各种各样的风险,为学习这一专题准备好素材.

  2 课堂讲解风险与决策的数学模型

  有了以上的素材的储备,使得风险本身的含义就不难理解了.现在应当把风险造成的损失量化,这样才有可能将风险降低到最小的限度.将风险所造成的损失量化就是要建立损失函数(,)LDH,其中D代表某种决策,H代表这种决策的某种状态,损失函数L具有非负性.除此之外,还得了解D的各种状态H,所有的各种状态互不相容,构成了样本空间的一种划分,并对各种状态H发生的概率()PH都要做出正确的估计,这样就可以建立决策函数的数学模型()RD.决策函数()RD的值越小,说明D代表的决策风险就越小.

  要建立风险意识,风险小的事情可以去做,风险大的事情不要去做,否则要冒风险.但是还应当注意到在经济生产实践中往往风险与收益成正比,风险大收益也大,所以应当在能够承担的风险限度中追求收益的最大化.

  建立数学模型时除了使用课本的例子外,还可以就学生所关心的问题来建立数学模型,切实地解决问题,这样的教学效果就更好.

  3 组织学生自己进行风险分析与决策实践

  掌握了风险与决策这一专题的基本知识以后,应当组织学生进行实践,每个学生都要对自己选择的风险问题进行分析决策实践,可以将实践的结果写成一篇小论文,按问题的类型分组进行交流讨论.将学到的知识应用于实践,学生能够亲身体会数学知识的作用和力量,并从自己的实践中提高应用数学的能力,分析问题和解决问题的能力.

  4 对这一专题学习的评价的探讨

  由于这一专题的学习方式是实践、理论、再实践,因此要注重对学生学习过程的评价,比如参与数学活动的积极性、自信心、合作交流的意识、独立思考的习惯、数学语言的表达能力、反思等.还要恰当地对学生基础知识与基本技能的评价,重点应当考查能否在具有现实意义的背景中应用本专题的基础知识与技能,是否具有风险

高三数学教学工作计划 篇4

  1.教学任务分析

  1.1 学情分析

  本节课的授课对象是我校学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。

  1.2 教材分析

  1.2.1 教材地位和作用

  所用的教材是人教版《必修5》,教材通过日常生活中的实例,讲解等比数列的概念,特别地要体现它是一种特殊函数,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一,为培养学生思维的灵活性和创造性打下坚实的基础。

  同时本节课是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列,即等比数列的相应知识,我认为本节教材对于进—步渗透数学思想,发展逻辑思维能力,提高学生的品质素养均有较好作用。众所周知,数列是中学数学的重点内容之一,也是高考的考查重点之一,其中等差数列和等比数列尤为重要,有关数列的问题,大多数都是归结为这两种基本数列加以解决的:而且这两途中数列在实际问题中有着广泛的应用,这说要求教学中高度重视,并有新的突破,拓展和引深。

  1.2.2 教学任务和目标

  教学任务分析:通过观察、归纳、猜想、类比等思维品质,正确理解等比数列的定义、等比数列通项公式。以及具体的知识运用及实际应用。

  本堂课内容的编者按:首先注意前后知识的区别与联系,加强对比和类比,展示等比数列概念的形成和和指数函数的对应等深化过程,使得后进生部有发言权,优生也不乏味,从而达到面向全体的目的,激发学生学习数学兴趣。其次体会研究等比数列通项公式简单归纳方法:特殊→一般,重温数学家发现数学概念和数学公式的思维活动过程,沿着数学家寻求真理的足迹,再现与前人类似的创造过程。

  教学目标:

  知识目标:理解并掌握等比数列的定义和通项公式,并加以初步应用。

  能力目标:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。

  品质素养目标:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。

  1.2.3教学重点和难点

  教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。

  教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。

  2.教材教法和学法分析

  教材的处理

  鉴于学生已基本上掌握数列概念,等差数列概念及通项公式(有利因素),但于由学生对教师,书本对于依赖,独立探索的信心和能力尚显不足(不利因素),故应稀释、放大、拉长等比数列概念的形成,展示深代过程和通项公式的推导过程,体现过程教学法。讲完课本例1、例2,例3,把等比中项的概念安排到第二课时教学。本节着重体现等比数列概念形成的过程及通项公式的推导与运用。

【有关高三数学教学工作计划4篇】相关文章:

高三数学教学反思04-07

高三数学教学反思05-21

高三数学教学总结05-17

高三数学教学工作计划 15篇04-15

高三数学教学工作计划三篇04-14

高三数学教学工作计划 15篇04-15

高三数学个人教学反思04-27

高三教学数学反思12-29

高三数学个人教学反思04-24

高三数学教学计划05-10