光阴的迅速,一眨眼就过去了,我们的工作又将迎来新的进步,此时此刻需要制定一个详细的计划了。相信大家又在为写计划犯愁了?下面是小编为大家收集的高二数学教学计划10篇,欢迎阅读与收藏。
高二数学教学计划 篇1
一、指导思想
主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考
和作出判断。
4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二.工作目标
备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。
1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。
2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。
3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。
4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。
三.主要措施
1.以老师的精心备课与充满激情的教学,换取学生学习高效率。
2.将学校和教研组安排的有关工作落到实处。
3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。
四.活动设想
1.按时完成学校(教导处,教研组)相关工作。
2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。
3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。
4.互相听课,以人之长,补己之短,完善自我。
5.认真组织好培优辅差工作。
6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作.
7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略.
五.教学内容与要求
1.导数及其应用(约24课时)
(1)导数概念及其几何意义
①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。
②通过函数图像直观地理解导数的几何意义。
(2)导数的运算
①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。
②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。
③会使用导数公式表。
(3)导数在研究函数中的应用
①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修
案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
(4)生活中的优化问题举例。
例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)
(5)定积分与微积分基本定理
①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。
②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)
(6)数学文化
收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)
2.推理与证明(约8课时)
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中
的作用(参见选修2-2中的例2、例3)。
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
(2)直接证明与间接证明
①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。
(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。
②介绍计算机在自动推理领域和数学证明中的作用。
高二数学教学计划 篇2
在学校领导的正确指导下,我高二数学备课组教师,在深刻体会学校教研处的《认真落实各项教学常规工作》精神的基础上,在很好地完成了上学年的教学任务的基础上,拟在本学期,以更饱满的工作热情,更端正的教学态度,更行之有效的教学手段,共同提高数学科的教学质量。
一、有计划的安排一学期的教学工作计划:
新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划及讨论如何响应学校的号召,开展主体式教学模式的教学改革活动。
一个完整完善的工作计划,能保证教学工作的顺利开展和完满完成,所以一定要加以十二分的重视,并要努力做到保质保量完成。
在以后的教学过程中,坚持每周一次的关于教学工作情况总结的备课组活动,发现情况,及时讨论及时解决。
二、定时进行备课组活动,解决有关问题
备课组将进行每周一次的活动,内容包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的最新动态、数学教学的改革与创新等。一般每次备课组活动都有专人主要负责发言,时间为二节课。经过精心的准备,每次的备课组活动都将能解决一到几个相关的问题,各备课组成员的教学研究水平也会在不知不觉中得到提高。
三、积极抓好日常的教学工作程序,确保教学工作的有效开展
按照学校的要求,积极认真地做好课前的备课资料的搜集工作,然后集体备课,制作成教学课件后共享,全备课组共用。一般要求每人轮流制作,一人一节,上课前两至三天完成。每位教师的电教课比例都要在90%以上。每周至少两次的学生作业,要求全批全改,发现问题及时解决,及时在班上评讲,及时反馈;每章至少一份的课外练习题,要求要有一定的知识覆盖面,有一定的难度和深度,每章由专人负责出题;每章一次的测验题,也由专人负责出题,并要达到一定的预期效果。
四、积极参加教学改革工作,使学校的教研水平向更高处推进
本学期学校全面推行主体式的教学模式,要使学生参与到教学的过程中来,更好地提高他们学习的兴趣和学习的积极性,使他们更自主地学习,学会学习的方法。积极响应学校教学改革的要求,充分利用网上资源,使用分组讨论式教学,充分体现以学生为主体的教学模式,不断提高自身的教学水平。
高二数学教学计划 篇3
※教学目标:
知识与技能:
1、掌握空间直角坐标系的建立过程和相关概念
2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标
过程与方法:
1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。
2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点
的坐标确定的方法。
情感、态度与价值观:
1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。
2、通过学生的自主学习和合作学习,培养学生合作精神。
※教学重、难点:
重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示
难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。
※教学准备:
教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐
晶体模型的投影片
学生准备:直尺和正方形纸片
※教学过程:
(一)问题情境、导入课题
【投影】问题1、数轴Ox上的点M,用代数的方法怎样表示呢?
问题2、直角坐标平面上的点M,怎样表示呢?
问题3、怎样确切的表示室内灯泡的位置?
(学生复习回顾后回答问题1和问题2,思考、讨论后回答)
【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的`方法。
2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)
(二)师生互动、探究新知
1、空间直角坐标系的建立
【投影】问题4、空间中的点M用代数的方法又怎样表示呢?
(教师设问)空间直角坐标系该如何建立呢?
【投影】(1)直角坐标系的建立过程
如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的长为单位长,建立三条数轴: x轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-xyz,其中点O 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz平面、zOx平面.(引导学生仔细观察和理解)
【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度
②任意两条确定一个平面,共有三个平面,称坐标平面
③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)
【投影】(2)空间直角坐标系的画法
(3)右手直角坐标系
2、空间点的坐标表示
【投影】合作探究:
有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?
(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空
间直角坐标系中点与三维有序实数组之间也有一一对应关系
吗?(学生自行阅读教材P134)
【点拨】是一一对应关系。
3、坐标平面及坐标轴上的点的特征
【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y
(师生共同完成后,投影幻灯片)
【投影】想一想?
在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面
内的点的坐标各有什么特点?
(学生思考、讨论后教师总结)
(三)典型例题、解释应用
【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的
坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.
(解的分析和过程见投影)
【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2
原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.
目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求
点的坐标.
(解的分析和过程见投影)
( 四)随堂练习、巩固新知
练习1、教材P136练习第2小题
(五)课堂小结、温故知新
1、空间直角坐标系的建立
2、空间直角坐标系的画法
3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系
(六)布置作业
教材P136练习第1、3小题。
(七)板书设计:
4.3.1空间直角坐标系
一、空间直角坐标系的建立
1、建立过程
2、空间直角坐标系画法
3、空间直角坐标系是右手系
二、空间坐标系中点的坐标表示方法
三、坐标系中特殊点的坐标特征
1、坐标轴上点的坐标特征
2、坐标平面上点的坐标特点
四、例题分析
高二数学教学计划 篇4
教材分析:
本学期我任教05财会(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》。该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点:
1.注重基础:
“大纲”对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据“大纲”要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。
2.降低知识起点
多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成“大纲”中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。
3.增加较大的使用弹性
考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。
4.注重数学应用意识的培养
每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的例子,培养学生用数学解决实际问题的意识和能力。
5.注重培养学生使用计算机工具的能力
在“大纲”中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中增加了用计数器做的练习题。有条件的学生还可以培养学生使用计算机技术。
教材内容:
本学期使用的是第二册的教材,内容包括:平面解析几何,立体几何,排列、组合与二项式定理,概率与统计初步。
每章编写结构:引言,正文(大节、小节、联系、习题),复习问题和复习参考题,阅读材料(数学文化)等。除个别标注星号的选学内容外,都是必学内容。
学生情况分析及教学对策:
05财会(3)班是我刚接手的班级,因而对学生的情况并不是非常熟悉。从总体上看,该班的学习中坚力量主要在一小部分的女生,其他学生学习积极性较差。在要学习的学生当中,普遍表现出底子薄、基础差的特点,对以往知识的缺漏非常多。因而在教学过程当中,及时补遗、查漏补缺尤为重要。知识引入环节我设置旧知识补遗,先回顾新课所涉及到的旧知识点;对学生的要求以能处理简单的操作题为主。另外,舒适的环境对学生的情绪也有挺大的影响,因而在教学过程中应渗入环境教育,培养学生的环境保护意识。
教学进度表
周次
起讫月日
教学内容
教时
执行情况
1
8月28日至9月3日
学期准备工作
2
9月4日至9月10日
8.1(1);8.2(2);8.3(2)
5
3
9月11日至9月17日
8.4(2);8.5(2);8.6(1)
5
4
9月18日至9月24日
8.7(1);8.8(1);习题(1);8.9(2)
5
5
9月25日至10月1日
8.10(1);8.11(1);8.12(1);习题(2)
5
6
10月2日至10月8日
国庆放假
7
10月9日至10月15日
8.13(3);8.14.1(2)
5
8
10月16日至10月22日
8.14.2(1);8.15(3);习题(1)
5
9
10月23日至10月29日
习题(1);第一章复习(2);9.1(2)
5
10
10月30日至11月5日
9.2(1);9.3(2);9.4(1);9.5(1)
5
11
11月6日至11月12日
期中考复习
5
12
11月13日至11月19日
期中考试
13
11月20日至11月26日
9.6(1);复习(2);9.7(1);9.8(1)
5
14
11月27日至12月3日
9.9(1);9.10(2);9.11(2)
5
15
12月4日至12月10日
习题(2);9.12(1);9.13(2)
5
16
12月11日至12月17日
9.14(1);9.15(1);9.16(2);9.17(1)
5
17
12月18日至12月24日
9.17(1);习题(2);9.18(1)
5
18
12月25日至12月31日
9.19(2);9.20(1);9.21(2)
5
19
1月1日至1月7日
9.22(1);9.23(3);9.24(1)
5
20
1月8日至1月14日
9.25(3);习题(2)
5
21
1月15日至1月21日
期末复习
5
22
1月22日至1月28日
期末考试
23
1月29日至2月4日
期末结束工作
24
2月5日至2月11日
期末结束工作
高二数学教学计划 篇5
一、教材分析
1.教材所处的地位和作用
在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
2.教学的重点和难点
重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。
难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。
二、教学目标分析
1、知识与技能 :
(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
三、教学方法与手段分析
1、教学方法:本节课我主要采用启发探究式的教学模式。
2、教学手段:利用多媒体技术优化课堂教学
四、教学过程分析
布置练习:
课本练习 3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
五、板书设计
3.2.2(整数值)随机数的产生
问题解答: 课堂检测:
高二数学教学计划 篇6
一,学生的基本情况
118班66人,115班48人。118班学习数学的氛围很浓。但由于高一的函数部分基础较差,对高二乃至整个高中的数学学习影响很大。数学成绩或多或少都有尖子生,但如果能认真复习函数部分,学生努力,前途无量。如果我们能很好地引导他们,进一步培养他们的学习兴趣,…
二,教学要求
(a)情感目标
(1)通过问题分析方法、一个不等式问题的多解、一个不等式问题的多解、一个不等式问题的多重证明的教学,培养学生的学习兴趣。
(2)提供生活背景,让学生体验不等式、直线、圆以及围绕它们的圆锥曲线,培养运用数学学习数学的意识。
(3)探究不等式和二次曲线的本质,体验获得数学规律的艰辛和乐趣,学会小组合作学习中的交流和相互评价,提高学生的合作意识
(4)以情感目标为基础,规范教学过程,增强学习信念和信心。
(5)给学生时间和空间、班级和探索发现的权利,给学生自主探索和合作的机会,在发展思维能力的同时,培养学生的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——个挫折3354个矛盾——个顿悟——个新发现”的科学发现过程的神奇
(2)能力要求
1.培养学生的记忆能力。
(1)在研究不等式的性质、平均不等式、思维方法和逻辑模式时,进一步培养记忆能力。让记忆准确持久,快速正确的重现。
(2)通过对定义和命题的整体结构的教学,可以揭示它们的本质特征和相互关系,培养对数学本质问题的背景事实和具体数据的记忆。
(3)通过揭示解析几何的概念、公式和视值之间的对应关系,培养记忆能力。
2.培养学生的计算能力。
(1)通过解不等式和不等式组的训练,训练学生的运算能力。
(2)加强概念、公式、规则的清晰性和灵活性的教学,培养学生的计算能力。(3)通过分析方法的教学,提高学生在操作过程中清晰、合理、简单的能力。
(4)通过一题多解、一题多变,培养正确、快速、合理、灵活的计算能力,促进知识的渗透和传递。(5)利用数字和形状的结合,寻找另一种提高学生计算能力的方法。
3.培养学生的思维能力。
(1)通过用参数求解不等式,培养学生的思维缜密和逻辑思维。
(2)通过多解、多解、多证分析几何和不等式,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过推广和普及不等式培养学生的创造性思维。
(4)加强知识的横向联系,培养学生数形结合的能力。(5)通过解析几何的概念教学,培养学生的正向思维和逆向思维能力。
(6)通过典型例题的不同思路分析,培养思维的灵活性是学生掌握思维转化的途径。
4.培养学生的观察能力。
(1)在比较和鉴别中,提高观察的准确性和完整性。(2)通过对人格特征的分析研究,提高观察深度。(3)知识要求
1、掌握不等式的概念、性质和证明不等式的方法,不等式的解法;
2.通过直线和圆的教学,学生可以了解解析几何的基本思想,掌握
(2)难点1。不等式的解包括绝对值和不等式的证明。2.角度公式、点到直线距离公式的推导及简单线性规划的求解。
3.用坐标法研究几何问题,寻找曲线方程的一般方法。
五.教学措施
1.在教学中,要将传授知识与培养能力相结合,充分调动学生的学习主动性,培养学生的概括能力,使学生掌握数学的基本方法和技能。
2.坚持与高三接触,踏实面对高考,以数学五大思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生学习负担。
3.加强教育教学研究,坚持学生主体性原则,循序渐进,启发性。研究并采用基于“发现教学模式”的教学方法,全面提高教学质量。
4.积极参与和组织集体备课,共同学习,努力提高教学质量
5.坚持听同龄人讲课,取长补短。互相学习,共同进步。
6.坚持学习方法,加强个别辅导(差生和优等生),提高全体学生的整体数学水平,培养尖子生。
7.加强数学研究性课程的教学和研究指导,培养知识的实践能力。
第六,课表
这学期有81个课时。1.不等式18课时
2.直线圆方程25课时
3.圆锥曲线20课时
4.研究班18小时
高二数学教学计划 篇7
教学目标:
1、知识与技能
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法.
2、过程与方法
(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;
(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.
3、情感与价值观
通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.
教学重点、难点:
重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.
难点:把自然语言转化为算法语言.
教学过程:
(一)创设情景、导入课题
问题1:把大象放入冰箱分几步?
第一步:把冰箱门打开;
第二步:把大象放进冰箱;
第三步:把冰箱门关上.
问题2:指出在家中烧开水的过程分几步?(略)
问题3:如何求一元二次方程 的解?
第一步:计算 ;
第二步:如果 ,
如果 ,方程无解
第三步:下结论.输出方程的根或无解的信息.
注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:
①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。
②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。
③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
注:其他还有输入性、输出性等特征,结论不固定.
提问:算法是如何定义?
(二)师生互动、讲解新课
x-2y=-1 ①
回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程组的解为 x= ;y= 。
思考1:你能写出求解一般的二元一次方程组的步骤吗?
上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法
对于一般的二元一次方程组 可以写出类似的求解步骤:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程组的解为
(高斯消去法)
思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.
算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.
广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算
法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.
(三)例题剖析,巩固提高
例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?
算法:
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
课堂练习1:
整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
算法设计:
第一步,令i=2;
第二步,用i除89,得到余数r;
第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;
第四步,判断“i>88”是否成立?若是,则89是质
数,结束算法;否则,返回第二步.
探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?
例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?
算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。
S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。
S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只
S4 最后确定小鸡的数量:17-7=10只.
算法2:S1 首先设 只小鸡, 只小兔。
S2 再列方程组为:
S3 解方程组得:
S4 指出小鸡10只,小兔7只。
算法3:S1 首先设 只小鸡,则有 只小兔
S2 列方程
S3 解方程得 ,则
S4 指出小鸡10只,小兔7只.
算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿
S2 有小兔 只
S3 有小鸡 只
S4 指出小鸡10只,小兔7只.
算法5:S1 有小兔 只
S2 有小鸡 只
二分法:
对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.
例3(课本P4例2):写
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,则方程 的解就是函数f(x)的零点.
第一步,令f(x)= ,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点 .
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b];
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思
1、算法的主要特点:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.
2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明.
高二数学教学计划 篇8
一、指导思想:
为进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、 教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、 教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、 学情分析:
1、基本情况:高二(1) 班共50 人,男生36 人,女生14 人;本班相对而言,数学尖子约13 人,中上等生约23 人,中等生约6 人,中下生约6人,后进生约 2 人。
高二(2) 班共49 人,男生37 人,女生12 人;本班相对而言,数学尖子约0人,中上等生约7人,中等生约8人,中下生约22人,后进生约12人。
2、(1)班学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学要求:
1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。
2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。
3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。
5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。
6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。
7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。
9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。
8、所有考生都学习选修4-4 坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。
六、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
七、教学进度安排(略)
高二数学教学计划 篇9
一、指导思想:
在学校教学工作意见指导下,在级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二.学生基本情况
高二理可学生共有926人,多数学生学习积极性强,部分学生学习数学的气氛不浓、基础较差。学生对学过的知识内容复习不及时,致使对高二的数学学习有很大的影响,高一数学成绩充分反映尖子生少,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全体同学的学习热情,提高学生的数学成绩。
三、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、教学措施:
1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《学案导学》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
五、具体措施
1.不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路.注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整.
2.学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解.
3.以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用.
4.协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率.
5.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力.
6.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的.不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强.教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力.
高二数学教学计划 篇10
一、学生基本情况
261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣。
二、高二下册数学教学要求
(一)情意目标
(1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。
(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。
(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程的幻妙多姿
(二)能力要求
1、培养学生记忆能力。
(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。
(2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过解不等式及不等式组的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。
(2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。
(6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
4、培养学生的观察能力。
(1)在比较鉴别中,提高观察的准确性和完整性。
(2)通过对个性特征的分析研究,提高观察的深刻性。
(三)知识要求
1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;
2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。
3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。
三、高二下册数学教材简要分析
1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。
2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。
3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。
四、高二下册数学重点与难点
(一)重点
1、不等式的证明、解法。
2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。
3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。
(二)难点
1、含绝对值不等式的解法,不等式的证明。
2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。
3、用坐标法研究几何问题,求曲线方程的一般方法。
五、高二下册数学教学措施
1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“发现式教学模式”为主的教学方法,全面提高教学质量。
4、积极参加与组织集体备课,共同研究,努力提高授课质量
5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。
六、高二下册数学教学进度表
日期 周次 节/周 教学内容(课时)
3月1日~3月7日 1 5 一元二次不等式(组)与简单的线性规划(5)
8日~14日 2 6 基本不等式(3)测试与讲评(3)
15日~21日 3 6 命题及其关系(3),充分条件与必要条件(2),简单逻辑连接词(1)
22日~28日 简单逻辑连接词(2),全称量词与存在量词(2),复习(2)
29日~4月5日 5 6 曲线与方程(2),椭圆(4)
6日~12日 6 6 椭圆(2),双曲线(4)
13日~19日 7 6 ,抛物线(4),复习(2)
20日~26日 8 6 空间向量及其运算(5),立体几何中的向量方法(1)
27日~5月2日 9 6 立体几何中的向量方法(4),小结与复习(2)
3日~9日 10 6 期中考试
10日~16日 11 6 ,段考讲评(2),变化率与导数(4)
17日~23日 12 6 导数的计算(2)导数在研究函数中的应用(4)
24日~30日 13 6 生活中的优化问题举例(4),定积分的概念(2)
6月1日~7日 14 6 定积分的概念(2),微积分基本定理(2)、定积分的简单应用(2)
8日~14日 15 6 复习与测试(4),合情推理与演绎推理(2)
15日~21日 16 6 合情推理与演绎推理(2)、直接证明与间接证明(4)
22日~28日 17 6 数学归纳法(3),复习(3)
29日~7月4日 18 6 数系的扩充和复数的概念(3)、复数代数形式的四则运算(3)
5日~11日 19 6 期末复习(6)
12日~13日 20 6 期末考试
【高二数学教学计划范文集合十篇】相关文章: