身为一名人民老师,教学是重要的工作之一,通过教学反思可以很好地改正讲课缺点,快来参考教学反思是怎么写的吧!下面是小编精心整理的简便运算的教学反思,欢迎阅读与收藏。
简便运算的教学反思1
连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的。让学生理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积,也可以用这个数先除以第二个数再除以第一个数让运算变得简便”是教学的重点,因此我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”这也是本课的难点。
这节课还有很多不足,发现规律后,我本来想让学生结合生活实例再次验证,但因为对习题的选择不是太合适,所以只验证了其中的一个规律,而对于第二个规律,习题却不能完成验证,这一点是一个失误,应该进行修正,如果把习题再认真选一选效果一定要会好得多。
还有本节课教师的语言设计不是很精练,不能起到画龙点睛的效果,验证结束后,学生得到连除的'计算方法有三种,为了强调简便计算,我应该及时引导:“这三种方法,如果让你选择,你会选择哪一种?”从而让学生明白,解决问题的方法有很多种,但要学会根据算式中的数据特点,灵活选择简便的方法进行计算。这也是我们的数学的价值所在,可惜没有及时引导,很遗憾!
总之,本节课既有成功,又有不足,在第二次上课时,我会扬长补短,争取把这节课上的更完美!
简便运算的教学反思2
简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。
近两周时间我一直在教学运算定律和简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。我发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。
为此,我让学生做了大量的直接简算的题。通过练习,引导学生总结出一些常见的可以简算的对象,如:“25×4”、“125×8”、“5与任何偶数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。课堂上,当简便运算的错误发生时,我试着把问题反抛给学生,让学生自己来分析问题,解决问题。问题反抛,往往会给学生一种强刺激,他们会细致深入地思考,这个地方为什么会错了呢?有没有办法解决呢?这时,学生的注意力高度集中,思考的质量最高,也就成了思维品质培养的最佳时机。如:①176—57+43②147×16+53×25③175÷25×4④75+25-75+25等,受“凑整”思想的干扰,第一小题抛出后,学生们一眼看出数字57和43能凑整,于是绝大多数的学生忽略了运算符号,违背了运算法则,纷纷列出176-57+43=176-(57+43)=176-100。看到学生们果真上当了,我马上让学生计算176—57—43,然后追问学生,这两道题都可以变成176-100吗?然后将两道题放在一起对比,找出算式的`异同之处,并让学生按顺序算出两道题的结果进行验算。有了这一题的基础,学生在计算175÷25×4时就不容易出现类似的错误了。
“运用乘法分配律进行简算”是学生最不容易掌握的。乘法分配律的逆用是学生掌握的难点,老是容易出错。比如,第二道题,由于这道题与乘法分配律在表现形式上十分相近,致使一些学生容易造成直觉上的错误,误用乘法分配律解决问题,这说明学生对乘法分配律的理解还不够透彻。而少数观察仔细的学生则认为这些算法不正确!这时,我顺势让学生自己辩论,究竟能不能简便运算呢,有什么依据?各自说说理由,通过一番激烈的辩论,认为能简便运算的同学终于发现,原来两个乘法算式没有共同的因数,所以不能使用乘法分配律。有了这次简便运算的系统练习经验,学生们对定律和性质的理解和认识更加深刻了,在后来做简便运算习题时,学生们都表现出非常的小心和仔细,避免自己犯同样的错误。
最后强调:简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。这样教学,不仅使学生学会了单纯的简便运算,更重要的是,使学生初步理解了学以致用的道理,真正理解了书本上的知识必须运用到实际当中去的道理。
简便运算的教学反思3
简便运算是一种高级的混合运算,是混合运算的技巧,学好了简便运算,不仅能提高计算能力、计算速度及正确率,还能使复杂的计算变得简单,也就是变难为易,变繁为简,变慢为快。同时能灵活、合理地运用各种定律、性质、法则等达到融会贯通的境界,是计算题中最能锻炼学生思维能力、开拓学生思路的一种题型。所以,在计算题教学中应重视简便运算,注重简便运算灵活思路的学习,合理地进行简便运算,使学生的思维能力得到提高。五年级的简便运算的教学建立在学生已有对简便运算的认识上。小数乘法简便运算是整数乘法简便运算的延伸。
这节课我以学生先试后导,先练后讲为主线进行设计,突出学生的主体地位,发挥学生知识迁移能力。学生在整体认知小数乘法简便运算的运算律方面较容易,在计算过程中不少学生忽略了小数点的移动,有以下几点值得反思。
一、复习题的设计针对性强,为新课学习做好铺垫。
做好已有知识结构的迁移。在复习时先请两名学生到黑板上做:25×12和 87×46+ 54×87 ,同时其他同学集体练习。指名说说自己是怎样想的,提示学生运用的是哪一个乘法运算定律,实际有学生说第二题用的是乘法结合律,我并没有急于否定学生的答案,而是问学生乘法结合律的字母表达式和乘法分配率的字母表达式,并组织学生进行区别,以便更好的运用这两个定律解题。通过复习使每一个学生进一步明确乘法的.运算定律及它们之间的联系与区别,更加清楚如何运用运算定律解题。同时渗透并思考,这些运算定律在小数乘法中能不能用,激发学生对小数乘法的简便运算的猜想和求知的欲望。
二、新课学习先试后导,善用旧知解疑。
教师出示例题4后,简单分析题意,学生用自己的方法解题。
0.8×1.3○1.3×0.8
(0.9×0.4)×0.5○0.9×(0.4×0.5 )
(3.2+2.8)×0.6○3.2×0.6+2.8×0.6
有学生通过计算两边的算式结果来判断,大多数学生看见算式联想到简便运算来判断,第一种算法确定算式两边结果相等,第二种算法提供了学生思维判断的方法。这样有效地把整数乘法的运算律和小数乘法结合起来,运算方法在小数乘法中一样有效。
为了学生更好地运用运算律,安排了三题练习题
0.25×0.7×4、 1.25×2.4 3.2×1.02
保留了教材中试一试第一题,修改了第二题,增加了第三题题,第一题让学生理解乘法交换律,第二题运用乘法交换律和结合律,第三题是运用乘法分配律。第二题中2.4的分解是教学时一个难点,不少学生着重把24分解成8×4,忽略了小数点,这个环节的处理不够好,未能预料。第三题的教学也是一个难点,不少学生意识不到把1.02分解成1+0.02,只是一味去分解3.2。
三、巩固练习类型多样,提高学生能力。
巩固练习的设计除了根据运算定律填空外,还设计了各种类型的简算题,如:12.5×4.8 0.72×101 3.8×9.9 1.01×2.6 0.25×0.125× 0.4×0.8 0.4×8.2×25-0.3
这些题里有的接近整数、有的超过整数、有的要先转化再做,有的运用乘法结合律做,有的运用乘法分配律做,有的是部分简算,几乎涵盖了所有小数乘法简算的各种类型 ,另外还出现了部分简算的题,这样的题学生掌握的不好, 关键是根据运算定律判断是否能简算。最后是拓展提高,3.67×8.9 + 36.7×0.11 86.9×1.73 + 8.69×7.3 这两道题分别都有两种解法,学生根据刚才做题的经验,分析后很快发现36.7和3.67 、86.9和8.69可以互相转化,怎样才能使转化后的数的积不变,利用积不变的规律就能解决问题。这样提高了学生分析能力和灵活解题的能力。
不足之处:
整节课由于课堂密度较大,所以学生说的多,动笔练习较少,使得一部分同学没有掌握简算的方法,尤其是需要转化的题掌握的不好。其次,在新知识的探索阶段,教师给学生的时间较少,使得同学没有充分发表自己的意见,小组内同学之间交流的较少。
简便运算的教学反思4
《运算定律与简便计算》这一内容是四年下册第二单元的内容,课文呈现给我们的是一道与生活有关的解决问题这一方面的题。首先,我让同学们用自己喜欢的方法来做这道题,大部分同学走马观花的看了一下,就对我说,袁老师,这道题太容易了,我们学过的。“是啊,我们是学过,不就是连加类型的题嘛,但是你们要从中发现问题,要能够看出今天这节课到底通过这道题告诉我们一个什么知识……”这时,我让同学们交流想法,老师及时板书,让学生从众多算式中来发现:原来这节课,这一解决问题题是为了让我们用简便运算。
我趁热打铁,布置了几个连加的题目,让学生发现问题:学生观察后回答:加法交换律只是二个加数位置的交换,和不变,而结合律中,有时要把后二个加数相加,有时把后二个数相交,有时根据需要还需要先交换位置然后再利用加法结合律相加,我发现在上这一单元的'内容时,学生对于加法和乘法的交换律掌握的比较好,然而对于乘法结合律和乘法分配律常混淆,针对这一现象,我认为在练习课时要加以改进。
注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。以解决问题为切入点,激发学生学习的积极性,在学生探索时,酌情因势利导,不失时机地给予适度启发,学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生理清自己的算法。于是我在教学中强调了以下几点:
1.让学生学会分类:在教学中我把各种简算题型分类整理,尤其对于乘法分配律进行详细归类和整理。让学生从整体认识到个别比较,加深简算的印象。我发现这样更利于学生的学习与思维。例如:201×87=(200+1)×87=8700+87=8787(乘法分配律拆项法)54×43+54×56+54=34×(43+56+1)=34×100=3400(乘法分配律添项法)
2.让学生认真观察,自己悟出乘法分配律与乘法结合律的不同。在教学中,我比较重视乘法分配律和结合律的比较区分,可学生还是多次把分配律说成结合律,在计算过程中,也多次出现这样的混淆。尤其是对乘法分配律的算理还是不理解,针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3.让学生知道如何一下就能凑整。简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,让学生多观察数据,用选数凑整十、整百的方法训学生,对学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。
4.利用生活实例让学生知道简便运算给我们的生活带来的好处。注重生活练习实际,将简算运用在实际生活当中,易于学生接受。可达到事半功倍的效果。学习的目的在于运用,本单元的学习不仅仅是为了让学生知道在计算中可以应用运算定律使计算简便,更重要的是要让学生懂得生活中很多的实际问题可以有不同的途径来解决,学习要善于分析和总结,选择合理、方便、简单的方法更利于我们解决实际问题,要让学生真正理解学以致用的道理。
简便运算的教学反思5
《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。
1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。
2、把教学目的给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的`表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。
还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!
3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。
4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。
简便运算的教学反思6
[建议]:
1、“先学后教+当堂训练”教学模式不能学形式。如果不看自己所教班级的实际情况,把整个“引导——学练——堂堂清”教学模式的形式的一切一切,照搬过来,可以说,您的收获一定大不了,甚至会出现退步,可能要出现成语中“鸡飞蛋打”的效果。要把“先学后教—当堂训练”教学模式的实质和所教班级、学情联系起来,取其精华,这样才会取得较大的成绩。遵循的原则:凡是能使学生学习变好、能使学生习惯好转的方法、要求都可以强化,但千万不要在原方法和制度的基础上动作过大,否则学生、老师都吃不消,循序渐进,使这些方法和制度逐渐加强。
2、“先学后教—当堂训练”教学模式,有利于培养学生的自学能力,更有利于分层推进,这就需要教师一步一步地扔掉原来的不好的方法和经验。“先学后教—当堂训练”教学模式最主要的就是:学生是主体,在知识的学习中主要以学生自学、学生讲解为主。但有的老师总认为自已不讲讲,学生不会,不自己讲讲,学生总结不全面,这就错了。如果学生总结的深度不够或者各方面不全,那是老师“引导”这个工作没有做好。就需要我们在“引导”的内容上下功夫。只要引导得当,学生可能比老师想得全面。
3、“先学后教+当堂训练”教学模式。无论是备课还是上课、无论是自习还是作业批改,要真正按照“先学后教—当堂训练”教学模式去教好学,工作量是特别繁重的。课前预习你一定要分析清课程的知识点、重点、难点,还要把引导的内容和过程设计一下,即使在上课时的设计和实际不一定相吻合也要认真设计好,因为这是有的放矢的第一步。课上的巡回指导和提问会使感到劳累。课下的辅导和作业更需要的细心和奉献。
4、“先学后教+当堂训练”教学模式。如果学生从来没有自己预习过课本、从没有自己总结过知识点、从没有自己讲过课、没有养成认真听讲的习惯,那在开始时就要有个思想准备:设计教学的每一个环节都可能出现失败,这就需要教师严格落实“一丝不苟的学习态度、一滴不漏的学习要求、始终如一的学习习惯”的学风训练,执行好学习常规。
5、“先学后教+当堂训练”教学模式。不能是教师只学模式的形式,不研究教学实质,第二就是不能持之以恒。只要认准了目标,就一定要走下去,不管在学习、教学的道路上有多少阻力和挫折,只有执着地追求、探索,就一定会成功。如果能正确地分析学习中的'各个环节,并把已经成功的目标教学、创新教学应用到教学中去,成绩肯定比现在还要好,课堂教学水平肯定有质的飞跃。
[反思]:
在本单元教学过程,我们主要采取利用讲学稿“先学后教,当堂训练”的教学模式进行教学,我们觉得有以下几点是比较成功的:
1、简便计算不仅是一种知识技能,它更是一种优化思想,这种优化思想不是一节课就能完成的的事,它不能灌输,更不能速成,它需要一个长期感悟的过程。
2、简便计算与学生的数感是密不可分的。因此,培养学生良好的数感,对于学生提高运算能力,大有益处。
3、简便运算的思路会有很多,我们要注意培养学生算法多样化,培养学生灵活、合理选择算法的能力。
4、在教学中,教师要把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。同时,加强变式、逆向的练习,提高学生举一反三、有效迁移的能力。
5、简便计算的意识还要渗透于解决问题中,在没有“简便计算”这样的显性要求下,学生也能考虑简便计算。
6、我们应该努力让学生在简便计算的过程中,逐渐提高简算的兴趣,逐渐掌握简算的依据,逐渐领会简算的技巧,真正具备简算的意识,让学生明白三个层次:
①、进行简算应该由一定的运算定律、性质作为依据;
②、必须正确、适当地运用运算定律、性质进行简算;
③、应该根据数据特征灵活选用运算定律、性质。
简便运算的教学反思7
“简便计算”是小学数学(人教版)四年级下册教学的一部“重头戏”。它不仅是学生学习简便计算的起点,其中被我国著名数学家陈景润誉为“数学大厦的基石”的加法、乘法的五条运算定律,更是学生今后学习其他“简便计算”的基础。
最近在“简便运算”的教学中,通过学生的学习与练习,存在着一个老大难问题就是学生在计算时常出现“低级”错误,计算的正确率低。难道就真的没有什么办法可以解决吗?
我想但凡教过四年级简便计算的老师,或多或少都遇到过这样的问题:学生在课堂上能根据教师讲解的方法利用运算定律或性质很好地进行计算,表面看上去好像融会贯通了简便计算的“精髓。可为什么课后在作业中却出现那么多“五花八门”、运算定律“张冠李戴”的错误呢?
通过透视学生的作业,我按学生计算能力或题目本身的难易把错误现象分成以下三种情况:
(1)在作业里经常会出现下面的错误现象:75+125×25-25=200×0=0或321-126+74=321-200=121又或者800÷25×4=800÷100=8……仔细研究作业本后发现,出现这种错误现象的`大多数是计算能力欠缺的学生。他们缺乏观察性容易受到来自习题本身的数字或运算方法等知识本身造成的干扰,明明是不适合简便计算的内容,他们却不懂装懂“滥竽充数”。
(2)顾此失彼的情况也是十分严重,745-(145+325)总是忘了脱去括号便符号,学生每次讲解时思路也十分清晰,就是一做题就顾不上了。计算能力比较好的学生也经常出现这种错误。当然,除了习题本身比较难以外还与学生出现感知不准确、算理不清晰、应用不灵活等判断性错误有关;计算思维混乱以致计算时“顾此失彼”出现运算定律“张冠李戴”的错误现象。(三)结果分析在对回收学生问卷的统计中,得出以下几个现象:分析:1、2号题主要是调查学生的学习素质。
(3)做题时,学生容易受内、外环境干扰,没有养成专心致志学习的习惯;一半以上的学生没有养成做完题后自觉检查的习惯。因为不专心,做题时常会顾此失彼,丢三落四;不检查,会使本来会做的题出现错误;久而久之养成了“粗心”的坏习惯。
简便运算的教学反思8
设计这节课,基于两点:我们都知道,复习课很不好上,上不好就成了练习题的罗列。它既不像新授课那样有新鲜感,也不向练习课一样有成就感,没有复习课可操作的模式,上不好就成了练习题的展览课。公开课中,很少上复习课的,上这节课,对我来说本身就是一个挑战。我们都知道,简便运算是小学阶段一个很重要的内容,而且容易出错,即便是到了六年级毕业班,错误也是层出不穷,学生对于运算定律都能倒背如流,但是一遇上具体题目,又完全不是那么回事了。往往是说一套,做一套,基于这种情况,我设计了这节整理复习课。所以在设计这节课的时候,我整体上把握这样方向和原则:
1、以学生出的错题为抓手,由易到难,由简单到复杂,进行归类整理。
简单的题目一笔带过,乘法分配率的变式比较多,重点突破。允许学生出错,及时地发现他们在计算时出现的错误进行分析,发现各种做题方法的不同之处,进行梳理,融合贯通,理清知识的来龙去脉,详细分类。
2、尽可能多的把交流机会留给学生,让学生归纳整理简便运算中的方法。
本着这一思想,这节课的设计,我分三个大的环节:
第一个环节、复习运算定律,做好知识准备。
一开始上课,就复习各种运算定律,举例说明,然后用字母表示出来。唤起学生对以往知识的回忆。
第二个环节、在自主探索交流中复习简算。
复习完了运算定律后,按照以往的惯例,就是老师出题考查学生,学生在这里是被动学习。在这里,我以学生出的错题为抓手,由易到难,由简单到复杂,进行归类整理。调动了学生的积极性,激发了学生的学习内驱力。
我这一节课的设计,还侧重计算的方法和技巧,从方法和技巧上给这些简便计算的题目归类,小学常用的简算技巧基本就是五大类:
1、直接凑整
2、拆数凑整
3、带符号搬家
4、提取公因数
5、创造公因数
直接凑整是公式的简单套用,难度不大,不成问题。拆数凑整拆数分三类:之和,之差,之积。这样的题目关键在于让学生明白为什么要拆开,拆开以后简便在哪里,怎么简便,为什么要这样计算上。带符号搬家重在理解带着哪个符号搬家,要根据题目特点灵活运用。恒等变形是小学数学中重要的思想方法。恒等变形常常利用我们学过的'加减乘除法的性质。做加法时候,一个加数增加,另一个加数就要减少同一个数,它们的和才不变。除法中式根据商不变的性质做题。
这节课的重点,我放在了乘法分配律上,错题最多,类型最错。常见的就有五类,正向的,直接凑整,拆数凑整两类,反向的,就包括3类。直接提取的,省略×1的题目,积不变规律(主要是小数点的变化)这是很多学生的难点。
第三个环节、课堂小结回顾简算方法。
不足之处:
1、在复习课中,注重学生能力的提高,讲练结合。在本节课,例题还要精心设计,一些不是全班普遍的错例不出示,把时间留在相仿练习上,提高学习效果。形式可以是学生独立出题,出题的过程是学生思考的过程,是脑子中简算的过程。可以这样说,只要他会出题,他一定就会做题。
备课中老师有的语言和提问备的不够细,应该再细,要精心设计教师的提问!
简便运算的教学反思9
一、教学内容:
分数混合运算和简便运算
二、教学重点:
1、利用乘法的运算定律进行简便计算。
2、根据题目中的数的特征,选择正确、合理的.简便计算方法。
三、教学方法:导练法、类比法、迁移法
四、教学反思:
本课的教学内容是分数混合运算的顺序和简便运算。由于学生有一定的学习基础和学习类推能力,所以在教学时我直接告诉学生分数混合运算的顺序和整数混合运算的顺序相同,然后通过尝试计算,观察、分析、探究得出结论:整数乘法的运算定律在分数乘法计算中同样适用。接着思考在分数乘法中怎样运用运算定律,可以使计算简便。在讨论怎样运用定律时,由于学生有了整数和小数运算定律的基础,所以我直接放手让学生自己探索解决问题,只是在最后给学生一些重要的提示和总结,这样充分体现了以学生为主体,教师只是起到了辅助性的帮助,整节课学生的学习兴趣和学习自信心都得到了充分的激发。
简便运算的教学反思10
运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的.计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
简便运算的教学反思11
本节课的内容是在学习减法性质的基础上教学的。学生不仅知道了一个数连续减去两个数,可以减去两个数的和,还知道减法其数学模型。
成功之处:
1.沟通新旧知识间的联系,搭建学生学习的脚手架。通过减法性质的复习,建构减法与除法之间的联系,使学生对于新知的学习,不感觉困难,而是通过推想,得出除法的性质:一个数连续除以两个数,可以除以两个数的.积。
2.给学生留有充分的自主学习时间,掌握两种方法解决问题的解题思路。例题的教学采用了独立思考,小组合作学习的学习形式,让学生在组内充分发表自己的看法,知道每种方法要先求什么,再求什么,为什么?
不足之处:
1.练习中注重了基本形式的练习:4800÷25÷45100÷3÷17,忽视了变式练习,导致错误率高的问题。
2.部分学生对于特殊数的简便计算还存在计算错误。
再教设计:
1.注重对课堂节奏的把握,掌握好练习的时间和学生做作业的时间,做到习题精而少,有针对性。
2.注重对习题的变换练习,全面而缜密的设计练习题。
简便运算的教学反思12
在本节课的教学中,我认为小数乘法的简便运算的方法和思路和以前的整数乘法简便方法有着同样的道理。因此在教学中凸显学生的主体地位紧紧围绕培养学生思维能力这一主线,开放学生的自主空间,显得尤为重要。教学中我没有直截告诉学生这一知识点,而是让学生在过去的经验基础上猜想,在猜想基础上进一步验证,从而顺利地把旧知迁移到新知,真正地把乘法运算定律拓展的'过程内化为学生自己的体会与理解,为学生下一步探究提供基础,培养学生的类推能力。因此,在课后的小结中我还追问学生还学了哪些数,能否也能运用,给学生留下探索的空间。为今后分数乘法的简便运算留下了伏笔!
这节课围绕三个问题来展开:
1,怎么算?
2,你是怎么想到这样算?(运用什么运算定律)
3,这样做有什么作用?
在课堂中,我让学生运用运算定律掌握小数乘法的简便计算.总的来说,可以用几个字来概括本节课教学的重点:一看,二想,三计算.首先让学生学会看这些可以简便的数字,掌握数据的特征.对这一类型的数字有一定的记忆,培养学生对数字的敏感性.接着,就是思考用凑整的思想以及运用乘法运算定律来解决问题.最后就要仔细进行计算,使得简便后的计算结果和原来题目的计算结果一样.总的来说,这一节课还是上得比较顺利,感觉上课学生的配合比较融洽.而且难点学生们都暴露出来了,上课中也及时的得到了解决.
简便运算的教学反思13
满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!
到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。
这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。
然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的`时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!
这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。
简便运算的教学反思14
四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:
一、学会寻找题目的特点。
(1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。
例如:25、36,把36写成4×9。变成25×4×9,使计算简便。
(2)把接近整数的写成整数和一个一位数相加减。
例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。
(3)寻找能凑成整数的数,把它们相加减。
例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。
例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。
二、巧妙运用简便计算。
简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。
例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4
三、注重题目的对比。
有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的.对比。
例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律
例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。
总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。
简便运算的教学反思15
《分数混合运算和简便计算》教学反思四则混合运算和简便运算是小学数学学习的重点内容,详细的讲解在小学四年级下册,对于小数和分数的四则混合运算即简便运算,课本上仅通过一两个例题进行阐释,学生能够顺利进行的前提是对于整数混合运算和简便计算比较熟练。针对六年级的孩子特点和知识要求,我将内容分为两个层次。
第一层次由整数乘法运算定律推广到分数乘法引入,通过创设问题,引发学生的认知冲突,进而组织学生猜想:运算定律能否推广到分数乘法。让学生自由地、充分地发表观点后,引导学生自行设计方案来验证猜想。使学生学习数学的过程中真正成为生动活泼的,主动的,富有个性的过程。
第二个层次为例题教学。从个体的尝试到小组间的交流,再到全班汇报,步步为营,层层递进,始终紧扣“简算时,运用了什么定律?”展开。实践自己探究出的新知,是学生获得了成功的'体验,增强了学习数学的自信心;在独立解题后再交流,使小组合作落到实处,也进一步扩充了课堂教学的信息渠道。在本节课的教学中,我充分利用知识间的内在联系,向学生提供从事数学活动的机会。让学生通过自主探索,在新手环节,我组织学生猜想,让学生自由地充分地发表自己的观点后,引导学生自行设计方案来验证猜想。在这样的设计下,学生的思路突破了教材的束缚,是学习数学的过程真正成为了声动活泼的、主动的、富有个性的过程。学生在学习过程中,从个体尝试到小组间交流,再到全班汇报,步步为营,层层递进,获得了成功的体验,增强了学习数学的自信心。但是课后的习题,我还是发现了一些问题,比如分数加减法的计算,有时发现不了简便计算,所以还要加强练习。
【简便运算的教学反思】相关文章:
《简便运算》教学反思04-16
《简便运算》教学反思11-17
简便运算的教学反思02-01
简便运算的教学反思02-04
《简便运算》教学反思11-17
简便运算的教学反思01-29
《除法的简便运算》教学反思09-21
简便运算教学反思范文07-03
《简便运算》教学反思范文06-30
《连除的简便运算》教学反思06-22