倍数的特征教学反思

2021-11-16 教学反思

  作为一位刚到岗的教师,我们要在教学中快速成长,对学到的教学新方法,我们可以记录在教学反思中,我们该怎么去写教学反思呢?下面是小编整理的倍数的特征教学反思,仅供参考,欢迎大家阅读。

倍数的特征教学反思1

  教学过程中,在学生掌握知识的同时,注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成,但是要渗透数学思想方法或科学的研究方法,就提出了较高要求。在课堂上引导学生现在“百数表”中找规律,再再比100大的数中举例验证。通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果。经过于老师的倾心评课,以下几点问题需要思考实践:

  1、对学生已经发现的的问题不需再重复,这样就可以节省出教学时间。

  2、偶数的定义需要学生用自己的话解释一下。对奇数的定义理解一定要讲解透彻,为以后分辨质数打下基础。

  3、0,2,5排能够被5整除的数要说说排序方法,以免丢漏数。

  4、第一题的问题要求再明确一些,学生答题可能会更快。

倍数的特征教学反思2

  《2、5、3倍数的特征练习课》是一堂练习课,本节课是在学生已经学习了2,5,3倍数的特征的基础上进行教学的。为以后学习分数,特别是约分、通分,需要以因数倍数的知识的概念为基础,到进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需要用到质数、合数的概念,而最基础的就是掌握2,5,3的倍数的特征。从开始学习2,5的倍数特征仅仅体现在个位数上,到学习3的倍数特征时从只看个位转向考察各位上的数相加的和,学生已经有了思路上的转变,思维的转折,观察角度的改变,以此让学生自主探索4的倍数特征,但由于与2,5,3的倍数特征又有些许不同,对学生依然有一定难度。

  如果只是单一的做习题,势必有学生会感到枯燥无味,这样子学生的学习效果难以保障,对教师的功底与教学策略有很大的挑战。因此课堂伊始,我直接开门见山式的先对前面学习的知识进行复习梳理,接着利用学生感兴趣也是正在使用着的工具——“手机”的锁屏密码为线索,通过提示让学生解密码的方式激发学生的学习兴趣,然后以破解后的密码1080,导出本节课我们要重点探究的4的倍数特征。让学生带着趣味,自主的去探索。由于有了前面探索2,5,3倍数特征的基础在,所以在探索4的倍数特征时放手让学生通过操作,观察,思考从而有所发现,体验探索的乐趣。接着通过计数器,让学生明白判断4的倍数特征背后的原理。最后在练习巩固中,逐渐熟练应用所学知识,感知数学知识和我们的生活紧密联系。如何让练习课不仅仅只是做练习,让学生能在练习中获得对知识的理解以及思维上实质的提升,仍然值得我在好好的去思考探索。

倍数的特征教学反思3

  教学内容 :新课标人教版五年级下册17—18页的内容。 教学目标:

  知识目标:让学生经历2和5的倍数的特征的探索过程,理解并掌握

  2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

  能

  力目标:在学习活动中培养学生的观察、分析、比较、概括能力和

  合情推理能力。

  情感目标:增强学生的探索意识,进一步感受数学的奇妙。 教学重点 掌握2和5倍的数的特征及奇数、偶数的概念。

  教学难点 灵活运用2和5的倍数的特征及奇数、偶数的概念进行综合判断。

  教学准备

  教师为学生每人准备一张顺序数字卡片。

  学生每人准备一张十行十列的百数表。 二、教学设计

  (一)情景创设,导入新课

  师:同学们,你们喜欢玩数学游戏吗?我们今天玩一个数学游戏。同学们可以随便说出一个数,老师马上就能判断出这个数是不是2或5的倍数。如果同学们有疑问,还可以用计算器进行验证。 (学生分别报数:32、485、674、260??)

  师:32是2的倍数,但不是5的倍数。485是5的倍数但不是2的倍数。674是2的倍数但不是5的倍数。260既是2的倍数也是5的倍数。你们用计算器验证的结果和老师判断的一样吗?

  生1:一样。

  生2:老师你是怎样迅速判断出来的呢?

  师:你们想知道其中的奥秘吗?

  生:(齐答)想。

  师:今天我们一起来研究“2,5的倍数的特征”(板书课题:2,5的倍数的特征)。

  (二)问题探究,解决问题

  (媒体出示课本第4页的百数表,学生拿出学具中的百数表。)

  1、提出问题

  师:同学们,你们能在百数表中找出5的倍数吗?利用自己喜欢的表示方式在5的倍数上做上记号(可以用—、√、○、△等符号)。

  2、自主探索,合作交流,发现规律

  (学生开始找5的倍数并做记录。)

  师:谁能说一说你找出了哪些5的倍数?

  生:5、10、15、20、25、30、35、40??

  (根据学生回答,教师板书)

  师:(引导学生观察、思考)你发现5的倍数有什么特征? 生1:这些数都相隔5。

  生2:这些数个位上有的是0,有的是5。

  师:(引导学生归纳5的倍数的特征)你们说的都不错,个位上是0或5的数都是5的倍数。

  (根据学生回答板书。)

  师:(引导学生验证举例)刚才我们观察的是100以内的数,也就是说观察的是一位数或两位数。那么是不是任何一个自然数,只要是5的倍数,个位上一定是0或5呢?请同学们任意写一个个位上是0或5的多位数,大家判断一下。

  (学生先在小组内交流,然后全班交流)

  组1:我们列举的数有:500、4500、605、125这四个数,通过计算,发现都是5的倍数。

  组2:我们验证了5个数,得出结论:只要个位上是0或5的数一定是5的倍数。

  ??

  师:大家是用什么方法发现5的倍数特征的?

  生答

  小结学习方法:列数字——归纳特征——验证特征

  下面同学们就用这种方法去寻找2的倍数特征。

  3、自主探索2的倍数的特征

  (学生动手做。)

  师:谁来说一说2的倍数有哪些?

  生:2、4、6、8、10、12、14、16、18、20??

  (根据学生回答,教师板书。)

  师:观察上面的数,你发现了什么规律?

  生1:我发现个位上是2的数是2的倍数。

  生2:我发现个位上是4、6、8的数是2的倍数。

  生3:我发现个位上是0的数是2的倍数。

  (板书:个位上是0、2、4、6、8的数都是2的倍数)

  师:(引导验证结论)请小组内的同学任意写几个个位上是0、2、4、6、8的数验证一下。

  师:刚才我们研究了2的倍数的特征。是2的倍数的数叫偶数,偶数也叫双数。 不是2的倍数的数叫奇数,奇数也叫单数。 师:谁来举例说一下生活中的偶数和奇数。

  生1:我今年12岁,12是偶数。

  生2:我17日出生的,17是奇数。

  生3:我们班有50人,50是偶数。

  生4:数学课本107页,107是奇数。

  生5:珠穆朗玛峰8848米,8848是偶数。

  师:那么0是偶数吗?说出你的理由。

  生:0不是奇数,0是偶数。

  师:你能说明一下你的理由吗?

  生:因为个位上是0的数是2的倍数,是2的倍数的数叫做偶数,所以0是偶数,也是最小的偶数。

  师:同学们说的非常棒,0是偶数。

  4、深入探究

  (教师出示下面的两组数。112、25、248、60、72、90.) 师:仔细观察上面的两组数,你发现了什么?

  生1:60、90既是2的倍数又是5的倍数

  师:什么样的数既是5的倍数,也是2的倍数?

  生:个位上是0的数既是2的倍数又是5的倍数。

  (三)应用拓展

  1、观察、交流、合作。(学生的号码从1——50)

  (1)请号码是2的倍数的同学站起来。

  (2)请号码是5的倍数的同学站起来。

  (3)请号码既是5的倍数又是2的倍数的同学站起来。

  (4)请号码是偶数的同学站起来。

  (5)请号码是奇数的同学站起来。

  师:通过刚才的活动你发现了什么?说出你的号码,与同学们交流。。

  生1:我24号,是偶数,也是2的倍数,站起来2次。

  生2:我11号,是奇数,站起来1次。

  生3:我20号,是偶数,也是2的倍数,同时既是5的倍数又是2的倍数,所以我站起来3次。

  师:请站起来3次的同学说出你的号码。

  10、20、30、40.

  师:同学们观察一下这些数的特点,说说你发现了什么? 生1:它们既是2的倍数,也是5的倍数,个位上都是0。

倍数的特征教学反思4

  《3 的倍数的特征》本节课的教学活动,注重学生实践操作,展开探究活动,组织学生进行交流和探讨,注重培养学生发现问题,解决问题的能力,让学生经历科学探索的过程,感受数学的严谨性和数学结论的正确性。我是从教学环节维度进行观课的,本节课有五个环节包括:一、复习旧知,直接导入。二、自主探究,合作验证。三、总结提升,共同验证。四、运用结论,巩固训练。五、全课小结,课后延伸。每个环节环环相扣,设计合理。下面就说一下自己的想法。

  一、以旧带新,引入新课。

  赵老师先复习了2、5的倍数的特征,为这节课的学习打下了基础。赵老师以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。

  二、亲身经历,探索规律。

  本节课教师努力尝试构建数学生态课堂,让学生继续利用小棒摆一摆,进而发现不止是3根、6根小棒能摆出3的倍数,9根也能“只要小棒的根数是3的倍数,摆出来的数就是3的倍数。”教师将“动手摆小棒”升级为“脑中拨计数器”,将“直观性思维”升华为“理性思维”,通过小组交流、集体验证,学生的探索发现离“3的倍数的特征”只有咫尺之遥。整节课让学生经历“动手操作——观察发现——举例验证——归纳总结”的探究过程,实现课程、师生、知识等多层次的互动。

  三、精心选题,巩固新知。

  习题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。本节课教师设计了3道练习题。在巩固练习部分,第(1)、(2)题是基本题;第(3)题,教师努力拉近数学与生活的联系。把数学和生活有机联系起来,使学生体会到数学在现实生活中作用和价值,初步学会用数学的眼光去观察事物、思考问题,树立学好数学、用好数学的志趣。

  四、回顾梳理,举一反。

  在学生学习的过程中注意“学习方法”的指导,让学生感受到掌握方法才能举一反三,真正做到触类旁通。最后一个环节设计了让学生静静的回顾这节课的学习历程“动手操作——观察发现——举例验证——归纳总结”,使其在数学思想上做进一步的提升。

倍数的特征教学反思5

  课堂总会有生成,不管一节课的教学步骤设计的有多严密、多紧凑,课堂教学中总会有新的问题产生,反思本节课的教学有成功也有不足:

  1、导入部分

  不足之处:

  应该说导入部分形式单一,显得过于死板,如果通过一个小游戏,让学生考考老师,用教师的准确判断激发学生学习本课内容的兴趣,由此引出课题,从而调动学生学习的积极性,把探索的问题抛给学生,激起学生探索的欲望,进而引导学生说出更大的数字,此时教师仍然能准确判断,于是让学生更为佩服老师,想进行探究的欲望会更浓,接下来的探究过程便水到渠成,课堂气氛也会因此而高涨。

  2、重点教学环节的设计

  成功之处:

  探索5的倍数的特征,先引导学生找出2的倍数,并指导找的方法,然后发现、总结2的倍数的特征。这样学生有了一个探索方法,引导学生总结探究方法后,我便放手让学生自己去探索5的倍数的特征了,在合作交流中学生体会到了学习数学的快乐,同时也给了学生一个自主探索的空间,一个交流互动的平台,也使他们获得了学习数学的成功体验。

  不足之处:

  课堂生成教师要及时准确地把握,并注意语言的艺术性,教师必须进入状态,与学生融为一体。

  3、教具学具的使用方面

  成功之处:

  我利用百数表,把1-100的数字中5的倍数,2的倍数通过让学生用不同的符号标出,给学生的感观一个有力的冲击。2、5的倍数的特征变得更直观,更明显,学生的印象会更深刻。

  不足之处:

  点找的很准确,应用合理。但现在想想,如果把这个百数表制成课件,用多媒体演示出来,而且让2和5的倍数用颜色标出,并在变色闪烁的过程中有声音的提示效果或许会更好些。

  教学后的思考:

  (1)是否需要验证发现的规律(2、5的倍数的特征),在哪个环节验证效果好。

  (2)如何强化学生的知识,使重点更为突出,学生有眼前一亮的感觉。

  (3)备学生很重要

  在探究的过程中,课堂气氛没有预想的那么好,在练习中学生才开始活跃起来。也许在对数学活动的探索中,学生不够自信,只是试着说。教师需要做些什么,得以改变学生的状态。

倍数的特征教学反思6

  2、3、5倍数的特征我设计的是一节课,但上完这节课上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,但我由于对教材的把握不够,时间用到2、5倍数上的较多。以至于对3的倍数特征探究不到位。

  好的开始等于成功了一半。课伊始,我设计了抢“30”的游戏,目的是让学生从中找到3的倍数,但我发现这个游戏没让学生部明白要求没有能提高学生的兴趣。意义不到。数学学习过程中应该是观察、发现、验证、结论等探索性与挑战性活动。首先让学生独圈出写出100以内2、5的倍数,独立观察,看看你有什么发现?学生很容易发现他们的特征,而这只是猜测,结论还需要进一步的验证。但我对这部分的处理太过于复杂零碎。以至于用的时间过多。比如说2、5倍数与其他数位的关系,着就不是本节课的重点。

  小组合作,发挥团体的作用,动手实践、合作交流是学生学习数学的重要方式。我觉得我们班小组小组合作还有很多部足的地方,比如说学生的之一能力倾听能等等还需进一步训练。

倍数的特征教学反思7

  今天教学了2、5倍数的特征一课,课前我们印制了百数图发给学生并布置了预习作业,让学生在百数图上分别画出2的倍数和5的倍数,分别观察2的倍数有什么特征,5的倍数有什么特征,因为这课的知识点的发现相对还是较简单的,课始让学生小组交流自己找到的数对不对,交流自己观察到的特征。全班交流时我发现大家说得都很好,找到了100以内2的倍数和5的倍数的特征,教师提问:是不是只要是2的倍数、5的倍数是否都有这样的特征呢?学生找了100以外的数进行了验证,一致得出只要是2的倍数、5的倍数都有这样的特征。接着我让男生出数让女生判断男生出的数是否是2的倍数或5的倍数并说明理由,这样的游戏也能让孩子们高兴一把,在这样的活动中也能提高学生运用知识的能力。对于奇数、偶数的概念教学还是比较容易的,因为在学生印象中已有了单数、双数的概念,我们这一课只要把学生已有的这一概念扩充到2的倍数都是偶数(双数),不是2的倍数都是奇数(单数)就可以了,有些学生还总结出个位是1、3、5、7、或9的数是奇数。。但在补充习题上,让学生写出5个奇数,学生中出现只写5的倍数如:5、10、15、20、25,或根据5的倍数来写奇数如:5、15、25、35、45、55.第一种是明显错的,没有审清题意,混淆了5的额倍数与奇数的概念,第二种写法虽说是对的,但看着总有些别扭,喊学生问了问,有些是懂得,有些还是如前面一样混淆了概念。正如有些学生学了2的倍数、5的倍数的特征后,还是不会运用这些特征去判断一个数是否是2的倍数或5的倍数一样。学以致用才能体现出教与学的成功。

  课的一开始,复习倍数的有关的知识,为新课学习作好铺垫。接着我设计了这样一个问题:我不用计算就能很快判断一个数是不是2或5的倍数,你们相信吗?不信就请你们任意说出一个数来考考老师。这样引入课题,不但大大地调动了学生学习积极性,而且能激起了学生探索的欲望。下面通过呈现 “百数表”,让学生从表中找出2和5的倍数,并用不同的符号分别圈出,在此基础上,引导学生观察这些数,找出它们的特点。我在学生总结出2的倍数的特征后,揭示偶数和奇数的含义。总结出5的倍数特征后,紧接着又让学生继续观察,找一找2的倍数和5的倍数有没有相同的数,然后再看看这些数又有什么特点。学生很快就发现了既是2的倍数又是5的倍数的特征。从课堂效果来看,学生基本上是可以独立发现的。教学中,我也留给学生充足的时间,放手让学生自主发现,学生在体验中获取了知识,有效地提高了学习的质量。

倍数的特征教学反思8

  这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。

  在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。

  1、组成的数是偶数的有( )

  2、组成的数是5的倍数的有( )

  3、组成的数既是2的倍数、又是5的倍数的有( )。

  这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。

倍数的特征教学反思9

  根据《数学课程标准》(20xx版)中所提出的“教师应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现‘问题情境—建立模型—求解验证’过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识”。从这一段的描述中我们可以看出,建立模型是数学运用和解决问题的核心。

  本节课,我首先设计问题情境,六一儿童节节目交谊舞、圆圈舞叠罗汉舞选人数,学生发现人数必须是2、5、3的倍数,激发探究欲望。再结合导学案,学生观察交流发现5的倍数只要是个位是0或5,从而在心中形成一定的模型,数的倍数的特征首先应看个位。通过验证,发现个位是0、2、4、6、8的数都是2的倍数。新知的形成自然而然。另外,本节里,总结出的2和5的倍数的特征本身也是一个数学模型。学生利用模型,认识奇数偶数、解决日常生活中的有关问题。

  其实,每堂数学课均可以形成一个核心的数学模型。数学模型在小学数学课堂上就是师生进行探究的结果,是一种数学知识;数学模型在小学数学阶段是由师生在课堂上构建出的数学认知结构。因而教师在进行教学设计时要认真思考建模是建立一个什么数学模型。课堂上构建出一个简洁、清晰、应用性强的数学模型,会让学生切切实实感受到数学的简洁美。作为一线教师,理清数学模型在教学中的地位与作用,切实研究好每堂课中所应建立的数学模型,才能有效的设计好整个建模过程,让学生真切的体验数学的魅力。

倍数的特征教学反思10

  《3的倍数的特征》的教学是在第一次教学之后,学校组织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:

  第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,在学习2、5倍数特征的基础上,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的特征。最后实践应用,课堂检测。

  整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的'机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。

  反思这节课的不足我觉得在每个环节的过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。

倍数的特征教学反思11

  在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。

  课前预习

  与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:

  复习引入,设置悬念

  出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:

  摆成2的倍数(学生回答356536并说原因)

  摆成5的倍数(学生回答365635并说原因)

  【设计意图:回顾2,5的倍数的特征】

  摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)

  问:个位上是3,6或9的数是不是3的倍数?

  学生验证,发现这四个数都不是3的倍数。

  问:3的倍数是不是看各位上的数呢它到底有什么特征?

  合作探究

  在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:

  3的倍数有

  各数位上,数的和

  和是不是3的倍数

  12

  1 + 2 = 3

  是

  汇报交流:你发现了什么?

  得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。

  巩固练习

  1,基础练习:

  (1)判断下列数是不是3的倍数(42 134 268 78)

  学生回答:例

  42是3的倍数,134不是3的倍数,

  因为4 + 2 = 6,6是3的倍数,因为1 + 3 + 4 = 8,8-不是3的倍数

  所以42是3的倍数。所以134不是3的倍数。

  (2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。

  (3)在下面的方框里填上一个数字,使这个数是3的倍数。

  2,有关于2,5,3的倍数的特征的比较,综合练习。

  反思

  本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。

倍数的特征教学反思12

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  一、猜想:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。

  二、验证::先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。

  三、探究:在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→2115→5118→8124→4227→72

  我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  四、验证:下面各数,哪些数是3的倍数呢?

  2105421612992319876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。这样结论的得出水到渠成。

倍数的特征教学反思13

  《3 的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。

  一、引发猜想,产生冲突。

  前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3 的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3 的倍数;3 的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3 的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的方法去判断一个数是否是3 的倍数。

  二、自主探究,建构特征

  找3 的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  在完成100以内的数表中找出所有3 的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3 的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。

  在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。

  三、巩固内化,拓展提高。

  在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全 归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。

  在初步感知3 的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。

倍数的特征教学反思14

  《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。

  3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。

  1、瞄准目标,把握关键

  在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、经历过程,授之以渔

  猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。

  3、追求本真,知其所以然

  本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。

倍数的特征教学反思15

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

  下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。

  “试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。

  整节课只能说顺利地走了下来,对于教者我来说从中发现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。

【倍数的特征教学反思】相关文章:

1.3的倍数特征教学反思

2.倍数的特征数学教学反思

3.《3的倍数特征》教学反思

4.3的倍数特征的教学反思

5.《3的倍数的特征》教学反思

6.25的倍数的特征教学反思

7.《3的倍数的特征》教学反思

8.《25的倍数的特征》教学反思

上一篇:《狐假虎威》二年级语文教学反思 下一篇:彩色的翅膀教学反思