作为一位到岗不久的教师,我们要有一流的课堂教学能力,对学到的教学技巧,我们可以记录在教学反思中,那么优秀的教学反思是什么样的呢?下面是小编为大家收集的数学简易方程的教师教学反思,希望对大家有所帮助。
数学简易方程的教师教学反思1
在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑
1、从教材的编排上,整体难度下降,有意避开了,形如:45—X=23 24÷X =6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。
数学简易方程的教师教学反思2
本课为人教版第四单元教学内容,本教材解方程方法利用了天平平衡的原理,采用了等式的性质来教学解方程。形如x±a=b一类的方程利用等式的基本性质一学生很容易解决,形如ax=b与x÷a=b一类的方程,利用等式的基本性质二学生也很容易解决。但行如a-x=b和a÷x=b此类的方程,学生就无从下手了,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦。解决问题时当需要列出形如a-x=b或a÷x=b的方程时,我就要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我觉得回避这两类问题不是很好的方法,否则,我们的教学就会显得片面和狭隘。如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷x=8,但是利用等式的基本性质学生就不会解,但你也不能说这个方程列错了呀。
因此我当有学生列了a-x=b或a÷x=b的方程时,我借机教了利用算术思路解方程(被减数=差+减数,被除数=商__除数)介绍老板教材的解方程的方法。基础好的孩子就容易接受新的方法,而基础差的孩子就还是无法解答此类问题。
另外教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。
看来教材利用等式的基本性质来解简易方程也是存在着一些问题,不知各位老师有什么好的方法来解决这些问题呢?请不吝赐教!
数学简易方程的教师教学反思3
很多时候,我们大人都喜欢用方程来解题,这固然是因为到了中学大量学习了各种各样的方程,一元一次,一元二次,二元一次等等,但还有一个更重要的原因就是方程对解题思路的解放,列算式解决实际问题时,解题思路常常迂回曲折,而他从根本上让学生脱离了繁琐的思路分析,而列方程解决实际问题,解题思路往往直截了当,降低了思维难度,它让学生从一个简单的思路——找等量关系来解题。所以说,这个单元的知识如何教好,从而让学生学好是非常重要的。
一、用字母表示数要注意对数量关系的理解
用字母表示数是学生学习代数初步知识的起步。在算术里,人们只对一些具体的、个别的数量关系进行研究,引入用字母表示数后,就可以表达、研究具有更普遍意义的数量关系。可以说,学习代数就是从学习用字母表示数开始的。
对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,而由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。而在老师们的'教学实践中,由于在进行用方程解题时格式非常重要,因此往往老师们教学时都会特别强调格式。可是从学生的后续学习来看,我慢慢发现,其实在教学这一部分知识时,老师要注重学生对数量关系的理解,也就是说要加强对学生的用含字母的式子表示数量的训练,也就是写代数式的训练。因为这是列方程的基础。所以,在这里教师一定要向学生强调并反复练习用含有字母的式子表示数量,让学生明白以往学习的所有数量关系在用含有字母的式子表示数量中都能用到。如:原来有100元,用掉X元,一样的要用减法求还剩下多少钱,买了3个练习本,每个A元,一样的用乘法来求一共要多少钱。让学生在这样的大量的练习和强化中,知道含有字母的式子的数量关系和以前是一样的,只是现在所用的符号不一样,其实,从广义上来讲,字母是一种符号,数字也是一种符号。
二、注重方程的意义的教学。
方程是什么,教材中是这样说的,含有未知数的等式叫做方程。其实,这只是从方程的表现形式来给方程下定义。也就是说,从表象上来说,如果一个式子是一个等式,并且含有未知数,我们就说这个式子是方程。但是,从数学的本质上来说,方程的意义是什么呢?我们每个人都能够熟练地列方程解决问题,那么,在你列方程解决问题时,你每次抓住的核心是什么呢?是等量关系。所以,方程最本质的教学意义应是同一个量(或相等的量)用不同的形式去表达。但很多时候,老师们在教学方程的意义时,往往只研究了方程的表面形式,也就是书上所说的:含有未知数的等式叫方程,所以,老师们一般都是从等式入手,让学生在认识等式的基础上引入未知数,然后告诉学生,象这样的含有未知数的等式叫方程。这样一节课教下来,学生除了会判断一个关系式是不是方程,还知道了什么呢?这样的学习对于后面的列方程解决问题真的有帮助吗?我想,每个人静下心来想想,应该都会有答案。
三、解方程的教学时不要被以前的教材编排所影响。
新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数X。而现在的教材编排时是根据等式的性质来解,当然,在教材上并没有归纳出等式的性质,毕竟,在学生的小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立,这并不是完整意义上的等式的性质。从学生的学习上来看,我觉得学生是比较容易接受这种方法的,特别是比较简单的方程,学生只要明白了要把谁抵消,怎么抵消,基本上问题不大。不过,到了稍微复杂的方程出现了一些问题,这也许是我在教学这一部分内容时,因为总是考虑到学生不喜欢列方程(以往的学生都有这个问题,可能就是觉得方程的格式繁琐,好像步骤也不少,学生总不喜欢),所以,我就想怎么让学生少写点字,所以,在具体的书写格式和步骤上,和教材稍微有点不同,我没有象教材那样写出怎样应用等式的性质的那一步,而是让学生直接写出这一步的结果,以至于到了后面,有部分学生就出现了一些问题,特别是象5(X+3)=55这样的方程,学生掌握得比较差,也可能是学生在用含有字母的式子表示数量时,还是没有很好地建立这样的一个式子是一个整体,表示一个数量这样的概念,尽管也进行了一些强调。另一个方面就是具体的步骤可能也对学生有影响,所以,我个人认为,可能让学生按照书上的步骤来写尽管麻烦一点,但对于学生理清思路可能更有帮助。
总的来说,我觉得简易方程这个单元,只要让学生有很好地用字母或含有字母的式子表示数的基础,再加上对方程的本质意义有清晰的理解,知道怎样解方程,其他的应该都不是问题,毕竟,上面的这些都是为列方程解决问题打基础。基础打好了,后面的问题就都能能迎刃而解了。
【数学简易方程的教师教学反思】相关文章:
1.简易方程教学反思