作为一名优秀的人民教师,课堂教学是重要的工作之一,写教学反思能总结教学过程中的很多讲课技巧,优秀的教学反思都具备一些什么特点呢?以下是小编精心整理的《勾股定理逆定理》的教学反思范文,仅供参考,大家一起来看看吧。
《勾股定理逆定理》的教学反思1
这次展示课,我上的是八年级数学课《17、2勾股定理的逆定理》,我是根据“五步三查”课堂模式来设计“导学案”和组织教学的。这次课相对于过去基础上的课堂改革是完全不同的课,其进步之处之一是规范了课堂的结构,明确了课堂模式“五步三查”,操作上更能心中有数。进步之二是发挥学生的积极性方式与手段更多些,“老师需要什么?就评价什么”,进行了有益的尝试,将评价纳入整个课堂,如何通过开展小组的评比与竞赛调动学生积极性及学习氛围积累了经验。进步之三是“导学案”的编写上更适和学生,更有利于对课堂的指导。进步之四是课堂效率和课堂效果更好。进步之五学生的主体作用得到了真正的体现。进步之六是课堂不仅成了学习知识的地方,更是增进情感、培养能力的地方。
这次展示课也有待改进的地方,其一是“五步三查”模式操作细节不清楚,对整个操作流程理解不到位,导致整个课堂有些乱,因不能多讲,又不放心学生学。其二是学生的能力培养还应下大功夫,过去是以老师讲为主,学生只是听记,现在要他们自学、讨论,同学们还不习惯,导致课堂有些沉闷。其三是时间紧,教学任务完不成,课堂的知识掌握度、能力目标达成度较低。其四是“五步三查”各细节的科学性、有效性落实,有许多细节的落实与协调有待深化,如如何评价?如何有效利用评价得分?如何有效独学?其五是“导学案”如何更科学编制?体现分层同时又能更有利于指导学生的学,也有利于指导教师的教。其六更主要的是老师的观念,树立学生为主体的观念,将学生发展落实到教育教学各环节这才是根本。勇于变革和创新,积极研究和实践才能保障我们的课堂改革更顺利推进。虽然存在这样多,或更多的问题,但对其前景我们每一个人都充满了信心,我们相信只有这样做才能真正达到教育的目标。
《勾股定理逆定理》的教学反思2
本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。
例如:活动1问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
这个问题意味着,如果围成的三角形的三边分别为3、4、5。那么围成的三角形是直角三角形。
2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。同学们经过操作,观察,探究,归纳得到直角三角形的判定,由感性认识上升到理性认识,能力得到提升。
3、在教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在和谐的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。
《勾股定理逆定理》的教学反思3
星期四上午第三节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的`思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
怎么避免上述授课时间紧张问题,取得更高的课堂效率呢?我简单谈两点建议,希望各位数学老师以后教此课时得到共勉。
一是在设计探究时应注重简化。我设计了三个探究:探究1是古埃及人用结绳打桩法得到直角;探究2是师生用尺规作图法得到直角;探究3是利用三角形全等的知识通过证明得到直角。现在觉得应把探究2简化,老师就“勾三股四弦五”给学生当堂做尺规作图演示,没有必要再让学生亲自作图,因为教师的演示,效果明显,学生已经理解,达到目标要求,这样就可以节约5分钟时间。
二是对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
《勾股定理逆定理》的教学反思4
根据学生的认知结构与教材地位,为了达到本节课的教学目标,我设计了以下几个环节:
1、创设情境,提出猜想让学生判断两位同学的画法是否都能得到斜边为10cm的直角三角形,通过对不同画法的探究,温故知新,为用构造全等三角形的方法证明勾股定理的逆定理做好铺垫、同时,引导学生从特殊到一般提出猜想。
2、证明猜想,得出新知。由于有前一环节的铺垫,通过启发、引导、讨论,让学生体会用构造全等三角形的方法证明问题的思想,突破定理证明这一难点,并适时出示课题。
3、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,我设计了三个层次的问题,以达到教学目标、第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题、根据学生原有的认知结构,让学生更好地体会分割的思想、设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验。真正体现学生是学习的主人。
4、归纳小结,形成体系让学生交流学习的收获、课堂经历的感受和对数学思想方法的感悟体会等。帮助学生内化新知,优化学生的认知结构,形成能力,减轻课后负担。
5、布置作业,课外延伸分层布置作业,目的是让不同的学生得到不同层次的发展。
【《勾股定理逆定理》的教学反思范文】相关文章: