作为一名优秀的人民教师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的圆锥曲线教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
圆锥曲线教学反思 篇1
高中数学总复习“圆锥曲线”这一章是平面解析几何的内容,以“椭圆”和“双曲线”和“抛物线”这三种曲线作为研究对象,通过引进坐标系,借助“数形结合”思想,来研究曲线本身的方程和简单几何性质,以及直线与曲线的位置关系及弦长等问题。
我们知道“解析法”思想始终贯穿在这全章的每个知识点,同时“转化、讨论”思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。从学生角度而言,大多数学生普遍反映平面解析几何的学习是不轻松的、做题就更困难了。这章公式是多,而且内容较抽象,计算量非常大,所以难度就大大增加,进而给学习带来了挑战及困惑。关于公式,不少学生仍然采用的'是传统的学习方式:死记硬背,机械模仿,导致在解题中往往碰壁而影响了学习兴趣及积极性。所以就有了“解析几何”是高中阶段最难的内容。但是用代数方法研究几何思路清晰,可以充分运用各种公式解题,特别要注意寻找题目中或者曲线本身所含的等量关系,解题方法就自然和容易了。
当然,对于高考中这道大题来说“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。 如何解决上述矛盾?如何让学生在高考中多得分呢?经过反思:
一、我们首先要解决“公式”的问题。
新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。我在教学过程中也是遵循上述思路开展教学的,举得效果还不错。还有,我就是带领学生一起归纳类比,从而加深印象,再要求学生完成复习小结上的那个表格,避免学生解题中公式的张冠李戴问题。再有,在引导中,老师可以形象的指出各种曲线的特点,比如在讲双曲线时可以用一首《悲伤的双曲线》歌曲来让学生记得只有双曲线才有渐近线。避免了学习过程相当枯燥及乏味,进而失去了学习积极性。
二、我们要培养学生在考试中的解题策略,并抓出重点学习,归纳方法。
这里的内容多、繁,如果有了主次之分就可以稍微轻松点了。在高考中,这里分数在17分左右,但是我们要去研究出题的模式,大多会考曲线的定义和韦达定理,还有解题关键是要用方程思想,列出“等量关系”。所以我们不会做的时候不妨看能不能用定义的等量关系,作为大题,第一问一般不难,不妨把前面的分数拿下来,再想办法把步骤写详细点,争取尽可能多的拿步骤分,因为这里的计算量会很大,所以我们要避免计算错误而导致不得分。
教学中还应考虑学生在掌握知识的同时,在感情、意志、态度等方面也能协调发展。学生只有不畏难了,才能数学学好。
圆锥曲线教学反思 篇2
圆锥曲线统一定义很简单但非常重要,学习时指导学生注意和抛物线定义相联系。由抛物线定义导入新课,将比值1改变,曲线会是什么形状?学生先猜想,后从形和数两个方面进行验证。从猜想——观察——验证——归纳这一过程中,学生获取了知识,而且加深了理解。通过例题对知识进行运用,巩固了所学知识。通过一题多解,一题多变,使学生产生了学习兴趣。
教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,留给学生更多的思考和探索,转变学习方式。验证学生的结果。
成功之处:
1、教学方法上:参考巴班斯基的“教学过程最优化”理论:“突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段。”结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学这两种教学方法,体现了认知心理学的基本理论。
2、 学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器瓶”,课堂上为学生的主动参与提供充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),选出代表上讲台讲解等做法,真正做到了“六让”:凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
3、学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。每个学生都经过独立思考后在前后左右的同学形成小组中进行了交流讨论,共同进步。
4,学生参与的“质量”上:课堂气氛不但很活跃,而且真正激发学生深层次的'思维和情感的投入。捕捉住了学生发言中的闪光点和思维的火花,不只满足学生此起彼伏的热烈场面。
5、媒体运用上:利用多媒体形象动态的演示功能提高教学的直观性和趣味性,以提高课堂效益。用了flash软件辅助作图,动画、影像等多种形式强化对学生感观的刺激,可以极大提高学习兴趣,变抽象为直观,加大一堂课的信息容量。
存在的问题
总体来说,这堂课的效果不错,但是由于课堂上对准线和图像的关系强调得不够,学生画图时仍然存在一定的问题,下堂课需要强化这一点。其次,学生的学习能力有待加强。从课堂的效果来看学生对运算的熟练还不够,他们总是担心会出问题,特别是解方程题缺乏化简的能力,教学上我的处理是在教学的过程中如果出现了这类问题,就具体跟学生讲解,然后让学生练习总结。今后还要加强对学生这方面能力的培养。个别关注做得不够。
圆锥曲线教学反思 篇3
本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,这为本节复习课起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》复习的第一节课,着重是教会学生如何判断直线与圆锥曲线的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的.解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。这节复习课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。
根据上述教材结构与内容分析,考虑到学生已有的认知心理特征,制定如下教学目标:
1、知识目标:巩固直线与圆锥曲线的基本知识和性质;掌握直线与圆锥曲线位置关系的判断方法,并会求参数的值或范围。
2、能力目标:树立通过坐标法用方程思想解决问题的观念,培养学生直观、严谨的思维品质;灵活运用数形结合、分类讨论、类比归纳等各种数学思想方法,优化解题思维,提高解题能力。
3、情感目标:让学生感悟数学的统一美、和谐美,端正学生的科学态度,进一步激发学生自主探究的精神。
本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥曲线中常见的弦长问题、中点问题、对称问题等。
我设计了:
(1)提出问题——引入课题
(2)例题精析——感悟解题规律
(3)课堂练习巩固方法
(4)小结归纳——提高认识
四个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。
接下来,我再具体谈谈这堂课的教学过程:
(一) 提出问题
课前我预先让学生先动手解决两个学生熟知的问题:直线与圆、直线与椭圆有两个公共点的问题。让学生自己归纳解决的方法。对直线与圆既可以用几何法也可以用代数法,而直线与椭圆只能用代数法。通过问题的设置一方面巩固旧知,又总结归纳新知:直线与圆与椭圆公共点的个数等于方程组的解的个数。
(二) 例题精析
接着引导学生自然过渡到直线与抛物线、直线与双曲线的位置关系的判断。对于例1,师生共同完成,特别关注两次分类讨论,一次设直线方程时对斜率存在与否进行讨论,另一次消去一个变量y后得到一个方程,是否为二次方程进行再次分类讨论,求出三条直线方程后,引导学生在图形中画出。引导学生从数和形两方面加以类比分析。再对题目进行变式,使学生感悟直线与抛物线的公共点个数问题常可通过图形进行定性分析,但易出错,可通过定量分析进行论证。对于例2,由学生板演,学生自主探究,师生共同归纳。
(三)课堂练习巩固方法
(四)类比归纳——提高认识
由学生总结本节课所学习的主要内容,以及收获,通过数学思想方法的小结,使学生更深刻地了解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。
圆锥曲线教学反思 篇4
《用圆锥曲线的定义解题》是解析几何中比较重要的一个内容,它直接和圆锥曲线的定义相联系。而我们在教学中,由于各个知识点往往会有很多的判定定理、性质等,所以反而忽略了定义的'应用。
在整个课程的教学中,我紧扣定义这一个曲线的最基本的东西,对椭圆、双曲线以及抛物线的定义的相同的地方、不同的地方以及各自的应用进行了详尽的阐释。为了能够动态的显示一些轨迹问题的结果,我选择了使用多媒体这一个现代化的教学工具,通过计算机的演示和不同数学软件的应用,培养了学生观察、猜想、严密证明等几个学习数学所必备的步骤。
圆锥曲线教学反思 篇5
《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的.出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。
教学需要学习,教学更需要反思,在反思中进步,在反思中提高。
圆锥曲线教学反思 篇6
在学习完第三单元《圆柱与圆锥》之后,很多学生容易把圆柱的表面积和体积的计算方法混淆、计算圆锥的体积时老忘乘三分之一、计算生活实际中的物体表面积和体积时,又不能正确判断该计算什么或者如何计算,一系列的问题困扰着全体师生,这些问题也反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对这种情况我设计了一节《圆柱和圆锥的整理与复习》课,本节课共设计了两个环节
第一环节:整理本单元学过的知识点。包括两部分:
1、同桌互说圆柱和圆锥的特征和相关的计算公式;
2、全班交流圆柱和圆锥的异同点,整理各种计算公式。
第二环节:课堂练习。本环节共设计了10道练习题,都是利用公式进行计算的题目,目的是强化学生运用公式解决实际问题的能力。
虽然课前做了充分的准备,但上完这节课,才发现课堂效果并不理想。静下心来反思,似乎自己有点高估了学生的能力,对学情的把握也不够好。本计划用7-8分钟的时间完成第一环节,然后就进入第二环节的学习。上课时才发现学生对圆柱和圆锥的特征的掌握还基本可以,对于计算公式只会死记硬背,很多学生并不理解字母公式表达的意思,因此在汇报交流环节用了较长的时间给学生讲各个字母公式的意思,帮助学生记忆最基础的计算公式。比如,有的同学还没记住圆的.面积公式,更不要说新公式了,完全是一塌糊涂。鉴于这种情况,我想在今后的教学中应注意以下三点:
1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。
2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。
3、复习时不要贪多,一节课只针对一个知识点进行复习,习题设计要由易到难,层层递进,训练学生举一反三的能力。
圆锥曲线教学反思 篇7
今天,进入第二单元《圆柱与圆锥》的学习,也是学生在小学最后一次学习空间图形。操作、思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材也安排了操作活动的,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形?让学生进行圆柱实物测量算表面积,制作笔筒,深化知识的理解。
我跟去年一样,布置课前前置作业:明天我们学习《圆柱的认识》,回家找一个大一点的圆柱形的物体,用最少的彩纸把这个圆柱包起来。
课一开始,让学生回顾学过的长方体与正方体的特征,你心目中长方体与正方体是怎样的呢?学生从面、顶点、边来交流,交流中其实对圆柱的认识做了很好引导。接着,让学生交流你心目中的圆柱是怎样的?由于学生自己操作过,因此回答非常积极。从底面、高和侧面来交流,很快学生在交流中明确:圆柱的上下两个面是完全相同的圆;侧面是一个弯曲的`面,并且粗细均匀;两个底面之间的距离叫做高,有无数条高。我追问着:你怎样证明两个底面大小相等呢?生1:我在包这个圆柱时,只测量了一个底面直径,剪了两个,正好,因此两个底面大小相等。生2:圆柱可以看成有无数个大小相等的圆片叠起来的,那么两个底面大小一定相等。生3:在包圆柱时,我测量过两个底面的直径,大小相等。你怎样证明圆柱的高有无数条?生1:我觉得两个底面间有很多的垂直线段。生2:底面有无数的点,两个底面对应的点连接的线段都是圆柱的高了。引导学生通过实验和推理的方法来证明,让学生结合实验操作进行辩析明理,加深学生对圆柱特征的理解。
你怎么知道圆柱的侧面展开是长方形呢?学生通过滚、包圆柱、围圆柱发现了展开的侧面与圆柱的联系。你能用这张长30厘米,宽20厘米的纸围成怎样的圆柱呢?生1:我围成的圆柱,圆柱的底面周长是长方形的宽,圆柱的高是长方形的长。生2:我围成的圆柱,圆柱的底面周长是长方形的长,圆柱的高是长方形的宽。我课件演示,观察一下,你有什么新的发现?学生发现了长方形的面积就是圆柱的侧面积,发现了两个圆柱的侧面积相等,都是这张长方形纸的面积。得出了结论侧面积相等,但它们的底面积不相等,高也不相等。通过这样的练习学生很自然的感悟到圆柱的侧面积就用长方形的长乘宽,也就是圆柱的底面周长乘高。
学生对圆柱认识到位与否直接关系到圆柱表面积和体积的教学,因此从某种意义上说认识圆柱是圆柱单元的重点中的重点。通过包圆柱,一张白纸围圆柱,把传统的剪改成现在的围,使学生对圆柱侧面研究自然过渡到对长方形与围成圆柱 关系的研究上,更加深入,努力实现探究效果的最大化。
圆锥曲线教学反思 篇8
前几天我配合学校教研活动讲了一节公开课。这节课是在整理和复习圆柱圆锥基本概念公式以及基础的习题后,针对学生容易出错的圆柱圆锥体积关系的变式习题进行的一节练习课。
让我始料未及的.是这节课毁了我从教十二年来所积累的所有自信心。一节课就让我看清了很多人的嘴脸。教研活动对课不对人,针对这节课优点在哪,存在的不足之处又在哪?这样的课型下回再上该怎么去上?这样每一位讲课教师才有信心上好下一节课。而不是因为一节课而否定一个人。哪一位教师也不能保证自己节节课都讲的很精彩,更何况是一节练习课。我们现在的教学又走进了另一个误区,以为一节课学生没有与老师进行互动,没有进行合作学习,就没有体现学生自主学习,进行点对点的课就是一节很不成功的课。我不这样认为。不是常说要在课前了解学生的情况吗?
我作为教师我很清楚我们班学生对这些知识点的掌握情况,讨论也好,合作也好,起不到应有的教学效果。很多学生跟着走了一个过场而已。看似热闹,实际效果不一定好。还不如老师和一部分学生讲,其他人听效果好。他们并不是陪衬。因为我觉得听会也是一种学习。我们不是一直都在讲教学的实效性吗?难道老师们节节课都有讨论有合作吗?讲授讲授有讲有授。有些课是没有必要合作的。
这只是我个人的一点看法,希望我们的教研活动越搞越成功,能有更多的老师参与。但不要一棍子把人打死。必竟给别人评课和自己讲课是不一样的。给教师一个上进的机会。
圆锥曲线教学反思 篇9
本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的教学设计,有以下几点思考:
1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的.实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。
2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。
圆锥曲线教学反思 篇10
这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。
在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。
在等底等高的条件下,圆锥的体积正好是圆柱体积的`1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。
从学生的练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的表面积,存在了几个问题。
1、单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。
2、求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。
3、虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。
在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。
圆锥曲线教学反思 篇11
综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:
一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,
(1)前轮转动一周,前进了多少米?
(2)如果每分钟滚动15周,压过的路面是多少平方米?
对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:
第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,在一次教研交流中听了于老师说的一句话,我茅塞顿开,我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我也随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利和手中的书本等帮助自己化抽象为形象,从而化难为易,而不能不加思考去拼凑算式。
再如,课本59页第12题:欣欣把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的.高吗?
大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。
怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在本上画图,我受到了启发:是啊,当它们体积相等时,学生可以在本上画图,凭直觉就能发现,当底面积也相等时,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,也轻松掌握了这一方法,以后,在这类题上就很少出错了。
通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。
圆锥曲线教学反思 篇12
经过三个星期的教学,第一单元(圆柱和圆锥)如期完成了教学任务。本单元的知识点包括面的旋转、圆柱的表面积、圆柱的体积、圆锥的体积等。
在教学过程中,通过学生的课堂反映、作业质量、小测的反馈信息,本单元掌握较好的知识点有:面的旋转、圆柱的体积、圆锥的体积。这些知识,大多数学生都掌握了长方形、三角形旋转一周后得得到一个圆柱、圆锥,会利用公式底面积乘以高得出圆柱的体积,以及利用底面积乘以高再乘以三分之一得出圆锥的体积。在体积的教学中,我主要是通过类比法,先复习长方体和正方体的'体积公式:底面积乘以高,然后让学生通过猜测、尝试验证等手段,让学生推导出圆柱和圆锥的公式,所以学生记得特别牢固,这一点在日后的教学继续发扬。
同时,本单元出错较多的地方是:计算圆柱的表面积,因为学生在求表面积时,没有很好地理解这个圆柱是求两个底面积加上一个侧面积,或者求一个底面积加上一个侧面积,或者只求侧面积……,所以经常列式出错,以及计算准确率不高。
但总的来说,第一单元(圆柱和圆锥)的教学目标已达到,部分知识点学生没有完全掌握的,在期末复习中查漏补缺。
圆锥曲线教学反思 篇13
最近对圆柱与圆锥知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的.能力。
课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,只要同学们认真审题,这类题基本没什么问题。问题是计算速度慢,该记得数据没记住。
圆锥曲线教学反思 篇14
本课中,我将学具和现代化多媒体网络技术有机地结合起来,直观、形象地展示圆锥体,并联系生活实际让学生列举了生活中的圆锥。如:圆锥形煤堆、圆锥形粮堆、削过的铅笔头等,帮助学生建立起圆锥的表象。然后让学生拿出课前准备的学具,通过看一看、摸一摸、说一说等活动去发现圆锥的特征,在实践中去理解概念。为了突破教学的重难点,我给学生创设自主探究知识的空间,让学生以小组为单位探讨测量圆锥的高的方法,学生们积极参与,各抒己见发表自己的`见解,最后得出了测量圆锥高的方法。这时我趁热打铁,让学生动手测量手中圆锥模型的高,小组同学配合默契,很快地测量出了圆锥模型的高。为了加深对知识的理解,我又通过多媒体直观演示测量圆锥的高,再次强化了知识。
设疑能调动学生的求知欲望,我提出了问题:“同学们想不想知道圆锥体立体图形展开后会是什么样子呢?”请同学们猜一猜,有的学生说:“是一个圆形和一个扇形。”他们的猜测是否正确呢?请同学们快动手进行验证吧!学生马上动手验证,最后得出结论,他们的猜测是完全正确的。接下来我在学生面前进行了直观演示,又通过多媒体动态演示圆锥展开的过程,圆锥高的测量方法,有效地突破了本节课的重难点,提高了课堂的教学效率。
同时,我还注意了知识间的对比,在学习完圆锥的认识以后,我让学生把圆柱和圆锥的特征以及展开图进行了有效地对比,让学生回答它们的相同点和不同点,学生能准确地回答。从而加深了学生的认识和理解,完善了学生的知识系统。
通过这一系列的数学活动,调动了学生的学习热情,学生们能积极参与探索知识的过程,充分体现了以学生为主体的教学理念。同时培养了学生自主探索知识的能力。
但也存在不足之处,教具和学具准备的不充分,我在示范画圆锥立体图形时,没有用三角板去画,而是用手去画,画完的圆锥立体图形不够规范和美观。还有学生的学具(圆锥模型)没有达到人手一个,这样给动手操作带来不便。在今后的课堂教学中,我一定重视教具和学具的准备工作,确保教学效果更完美。
圆锥曲线教学反思 篇15
该学习“圆锥的认识和体积”这部分知识了,想到在学生的生活中,纯圆锥的物体并不多见,所以这样安排本部分内容的教学。
第一节课带领学生做圆锥,画圆——剪圆——再剪出圆心角不同的扇形——把两条半径无缝隙的粘住,放在桌上,一个圆锥成型了,如果你想粘上底面也可以,可是得知道底面的半径啊!(拓展怎样知道扇形的半径和圆心角的`度数,求出圆锥底面半径的大小)
学生自己做出来的圆锥,对它的认识肯定是比较深刻的——圆锥由一个底面和一个曲面围城,底面是圆,侧面展开是一个扇形,还有强调对圆锥的高的理解。直角三角形沿一条直角边所在的直线旋转可以得到一个圆锥,让学生试一试,想象一下。
第一节课圆锥的认识,因为加上了让学生动手制作这一环节,教学效果出奇的好,也为下一节课做好的铺垫。
圆锥曲线教学反思 篇16
《圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:
一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;
圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。
策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:
1、等底等高,V柱=3V锥
2、等底等积,3H柱=H锥
3、等高等积,3S柱=S锥
二、计算难度大,全是小数的加减乘除法计算,学生容易出错。
策略:加强小数的计算训练,特别是多进行N×3.14的训练,提高计算准确率。
三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。
策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的换算,学生习惯性地使用了长度单位的`10进制,要特别注意纠正。
四、对题目的理解不到位,关于圆柱面积的计算经常出错。
策略:以题组的形式进行对比训练。
如:
1、给圆柱体模型刷油漆(求表面积)
2、圆柱形罐头贴商标(求侧面积)
3、厨师帽的材料(求表面积,但不计算下底面)
4、铁桶的材料(求表面积,但不计算上底面)
圆锥曲线教学反思 篇17
对于圆柱和圆锥的教学,比较适合的教学方法是学生动手操作,独立探索获取新知,如
1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。
2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。
3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。
4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的.创新能力也得到发展。
本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习:
1、计算学具的体积;
2、在桌面上有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。
- 相关推荐
【圆锥曲线教学反思】相关文章:
《用圆锥曲线的定义解题》教学反思08-13
景阳冈教学反思教学反思02-28
萧教学反思教学反思12-06
春晓教学反思教学反思09-29
美术教学反思教学反思11-24
《猫》教学反思猫 教学反思09-21
《咏柳》教学反思_小学教学反思09-21
《坐井观天》教学反思坐井观天 教学反思06-05