《组合图形的面积》教学反思1
核心提示:在本节课的教学设计和实施中,我根据教学大纲及新课程的理念,进行了大胆的尝试。《数学课程标准》的基本理念中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的;学生的数学学习活动应当是一个生动活...
在本节课的教学设计和实施中,我根据教学大纲及新课程的理念,进行了大胆的尝试。《数学课程标准》的基本理念中指出:学生的数学学习内容应当是现实的、有意义的.、富有挑战性的;学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。如何把这个基本理念应用到数学课堂教学中呢?在教学《组合图形的面积》这一课中,我针对这一理念,创设了生动的生活情境,精心设计了学生的学习内容。感觉效果还不错。我从以下几个方面谈谈。
1、组合图形的面积是学生学习了长方形、正方形、平行四边形、三角形和梯形的面积计算的基础上进行教学的,上课的时候我一开始设计了复习基本图形的面积,为下面计算组合图形的面积打下基础。接着让学生用长方形、正方形、平行四边形等基本图形拼出一些美丽的图案,体会组合图形的特点,玮引入组合图形做好了准备,以旧引新顺其自然。又认识了生活中的组合图形,感知数学无处不在,有了这些基础学生很顺利的进入新知识的探究。
2、在探究过程中我分三个层次,由自己独立探索到小组合作以及全班交流。学生动手操作,自主探究,理解并掌握了组合图形的面积的计算方法。课堂上充分发挥了学生的自主性,调动了学生的学习积极性,在交流多种方法的过程中也培养了学生的发散思维能力。学生了解了用分割法或添补法转化成基本图形计算组合图形的面积,明白了无论分割与添补,图形越简单越好,越简单越便于计算,同时还要考虑到分割或填补的图形与所给的条件的关系。达到了预期目的。
3 、本节课充分发挥了学生的主体作用,大胆尝试放手,相信学生的能力,鼓励学生主动探索,给足学生时间和思维的空间,尽最大限度地发展学生的观察思考能力和探究能力,增强了学生的学习兴趣。
《组合图形的面积》教学反思2
《课程标准》对于图形计算的要求是注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、位置、大小关系及变化,发展学生的空间观念。教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。
1、创设情景,激发学习兴趣。
好的开始等于成功的一半。本课一开始我就从介绍学生所熟悉的笑笑和她家的新房入手,进而出示房屋平面图,让学生观察得出这个图形是由几个已学过的图形组合而成的,接着再出示一组生活中的组合图形,使学生充分感受到数学与生活的密切联系,激发学生的学习兴趣,为下一步探究组合图形做好铺垫。
2、让学生在自主探索的基础上进行合作交流。
本节课,我组织学生以小组为单位,采用小组合作的学习方式,让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。 学生在探索的过程中,放手让他们拼画图,分割图,并自行解决提出的问题。让学生在画一画,分一分的活动中,初步形成“组合”的概念,从而对“组合图形”的意义有了更深一层的理解。
3、比较反思、逐步形成评价与反思的.意识
多种方法,我并不要求每个学生都去掌握,而是让学生选择自己喜欢的方法去计算组合图形面积,并阐述理由。学生通过比较,选择了比较简单的分割方法计算了,我顺势引导,为什么你们选择了这些方法计算(简单分割成2个基本图形的),而不选择哪些方法呢(分割复杂的方法)?学生总结出:计算组合图形的面积,对于分割的方法,分割图形越简洁,其解题方法也将越简单。我再次加以强调:在条件允许的情况下,转化的越简单,越好。让学生意识到要从多角度来思考问题。
4、通过拓展练习,进一步转化其他转化方法。
学生经过前面的探究知道了利用分割法和添补法可以把组合图形转化为学过的基本图形,来计算面积。为了帮助学生掌握更多的方法,我设计了通过割补和平移的方法计算组合图形面积的练习,拓展了学生的思维。
总的来说,本节课的教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。
《组合图形的面积》教学反思3
在本节课中,我从学生喜欢的复习形式引入组合图形,重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在教学中,重点放在学生思考理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。在让学生自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。接着让学生来说说自己的做法,学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的'面积计算,然后让学生汇报展示。接着做了一些巩固练习,加深理解。
在我的教学过程中,我觉得这节课中还存在以下不足:
1、这堂课讲的太多,应发挥学生的主体作用,让学生推导归纳已学过的长方形、正方形、平行四边形、三角形与梯形的面积公式,既加深学生印象,又锻炼了思维。
2、没有将割、补、割补的思想方法进行总结,练习反馈时,没有将结果进行优化;
3、练习设计上应该分为三个层次:给图形,条件,求解;给图形,不给条件,求解;可分却不可求解。层层递进,才符合学生的思维规律。
在今后的教学中,我将继续努力,尽量让学生多说,多自主探究,充分尊重学生的主体作用。
《组合图形的面积》教学反思4
计算组合图形面积的基础是已学的各种平面图形的特征和它们的面积计算公式。在组合图形中,有的已知条件是隐蔽的,需要学生运用已学的知识,根据图形特点,先把它找出来或推算出来,再计算面积。
本堂课我创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,先不给出数据,给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“根据最少的数据,寻求求面积的方法”这个思维策略思想,让学生比较各种方法,使方法优化,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。整堂课我主要体现了以下几点。
1.授人以鱼,不如授人以渔。策略的知识、方法的知识比技能技巧更重要。本节课并不是要教会学生求几个组合图形的'面积,而是让学生体会到(分割、添补、割补)的转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。当学生采用分割法学会了小房子侧面面积的计算后,我就设计了让学生帮我解决家里铺地板的面积计算练习,学生多样化的思考方法,在课堂上一一得到了展示,智慧的火花不断碰撞,又探讨出了另一种方法——添补法。
2.充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。本节课由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。
3.注重学生思维的发展。由于学生的认知背景和思维方式不同,决定着计算方法也有所不同。学生每一种求组合图形面积的计算的方法都蕴含着富有个性的思维方式,只要是学生探索发现的算法,印象就会特别深刻,运用起来就会游刃有余,并能获得满足、快乐等情绪体验,增强学好数学的自信心。对于学生个体来说,这种适合学生自己思维个性的方法,就是的。因此,我在教学中充分让学生自主探索算法。即使学生选择的方法不够简便,也要给学生充足的时间去体验、比较、反思,最后自觉地去接受其他较好的方法。学生在学习中从不同的角度去思考图形的组合,把前面学过的知识都灵活地调动起来,实现知识的综合应用。
4.注重学生的动手操作能力,直观地感受组合图形。课的开始的就让学生用信封中的图形,“拼一拼”,看能得到什么图形?像什么?让学生在动手操作的过程中感悟到组合图形的由来,从而能更清晰的解剖组合图形,为组合图形的面积计算做好铺垫。
当然在教学中也有许多地方值得反思。
1.时间的掌控不当,使学生失去了联系巩固的机会。本节课我只完成了三组组合图形的面积计算,学生在讨论方法的时候,方法比较多,在一一罗列讲解的同时,时间也在慢慢地消逝,这样学生的联系就相对比较少,巩固不够扎实。还如在课堂中本来想让学生找一找我们生活中的组合图形,但由于时间关系,这一环节被舍去了,很遗憾。
2.让学生找三个组合图形的面积计算的数据是否必要。由于想让学生感受在组合图形中我们要去发现一些有效的信息,因此在设计的时候我让学生通过自己测量各个组合图形的数据,找求出组合图形面积的有效的信息,这样花去了时间不说,对于基础比较落后的学生来说就无从下手了,他们不知道需要哪些数据,看着图很茫然,这样这节课对于中上水平的学生来说很有意思,但对于后进生这节课的学习就很失败。
《组合图形的面积》教学反思5
组合图形的面积是在学生学习了长方形、正方形、平行四边形,三角形和梯形的面积计算的基础上认识学习的,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
成功之处
1.注重组合图形的面积计算方法。通过添加辅助线,让学生用不同的方法解决问题,学生经过探索、发现总结出了分割法、添补法两种计算组合图形面积的方法。
方法1:把组合图形分成一个三角形和一个正方形。先分别算出三角形的面积和正方形的面积,再相加。
方法2:把这个组合图形分成两个完全一样的梯形。先算一个梯形的面积,再乘以2。
方法3:把这个图形补上两个三角形就变成了一个大长方形,先分别算出大长方形的面积和三角形的面积,再用大长方形的面积减去两个三角形的面积。
通过对比,总结出方法1和2为分割法,方法3为添补法,分割法要利用加法进行计算,添补法要用减法计算,利于学生建模思想的形成。
2.注重数学思想的教学。组合图形的面积计算实际上就是把不规则图形转化为学生学过的几种图形,利用基本图形面积再进行计算。在教学中,让学生进一步感受到我们所学的新知识都是利用原有知识,在原有知识基础上进行学习的,教给学生学习的.方法,即“授之以鱼”不如“授之以渔”。
不足之处
由于注重了多种计算方法的展示,本节课在各环节的分配上有所欠缺,需要对各环节有个提前预设,需要适当的引导孩子们在有效的单位时间内进行学习,达到预期的学习效果。
改进之处
组合图形方法优化上,要引导孩子们达到“分割的图形越简洁,计算起来越简便”。
《组合图形的面积》教学反思6
《组合图形的面积计算》是学生在学习了平行四边形、三角形、梯形的面积基础上,通过拼补的方法把组合图形转化成我们会计算面积的2个图形的面积进行计算,方法有很多种,学生选择适合自己的就可以。
本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。
通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了"由静态的信息变为动态的过程"的再加工重组,较合理地利用了教材资源。在教学中,先不给出数据,给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“根据最少的数据,寻求最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!
课堂也存在不足,比如说对例题学习可设计一些思考提示,让学生在思考的基础上尝试解决,学生有需要的.话点击提示,这样能使学生的思维处于积极状态,获得成功的情感体验。在后面的练习设计中,也可围绕一定的问题情境设计一些联系实际的问题,发挥学生的主观能动性,以学生自主探索,寻找解决问题的途径,真正将发现问题,解决问题的成就感还给学生。
《组合图形的面积》教学反思7
《组合图形面积》五年级上册《多边形面积》这一单元的内容。这一单元教材包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形面积。学生在进行组合图形面积计算时,要把一个组合图形分解成已学过的平面图形来进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于综合运用平面图形面积计算的知识。
基于以上对本单元、本节课内容的理解,我确定了本节课的教学目标及教学重难点和设计了教学过程。
(一)教学目标
1、明确组合图形的意义。
2、知道求组合图形的面积就是求几个图形面积的和(或差),并能灵活思考解决实际问题。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
(二)教学重点:探索并掌握组合图形的面积的计算方法。
(三)教学难点:根据已知条件把组合图形通过添补或分解成几个学过的基本图形。
(四)下面来具体谈一谈我本节课的教学设计
1、复习旧知
组合图形的面积需在学生在已有的知识基础上进行计算,所以开始设计了复习已学过的一些图形面积的计算方法,为新授内容做好知识铺垫。
2、创设情境,自主体验。
在新课开始,教师多媒体出示漂亮的组合图形让学生观察后说一说感受,这样学生就自然而然地认识了组合图形,再让学生寻找生活中物体表面的组合图形,体现数学生活化;后自己动手拼摆组合图形,使学生在头脑中再次对组合图形的`产生感性认识,而且也下面计算组合图形的面积作了铺垫。
3、突出重点,自主探索。
本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到求组合图形的方法。对于例题的教学,先让每个学生拿出学具通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让每个学生都参与数学活动,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。当学生汇报出许多方法时,体现了解题方法的个性化。然后引导学生进行比较,进行方法的优化,选择最好的方法解决问题, “你喜欢哪种方法?为什么?”
设计空方形砖的练习,是为了总结出求组合图形面积的另一种方法。
学生经历了自主探究与汇报交流总结出了求组合图形面积的方法,这样突出了本节课的重点和难点,知识落到了实处。真正作到了感悟与知识的生成相辅相成。
让学生求做一面中队旗需要多少布,让他们在合作交流中感受和体现如何用数学知识解决生活中的实际问题,让他们在合作交流,展示成果中产生乐趣,锻炼能力。从而激发学生学数学,用数学的兴趣,培养学生的应用意识。
今后要继续做到。
1、教学过程中,在指导学生学习方面,教师要全面关注全体学生,特别是学困生的学习与活动。
2、学生学习之间的互动还需进一步加强。
3、继续努力培养学生课堂发言的积极性与主动性
《组合图形的面积》教学反思8
随着时间的流逝,我乡的听评课活动已经落下帷幕。回想起自己在这次活动中的点滴,我颇受启示,特作反思如下:
我所讲的《组合图形的面积》这一节课的内容是:五年级上册第五单元最后一节的内容。这一节课是在学生们掌握了长方形、正方形、平行四边形、三角形和梯形的面积计算后所进行探索研究的`,所以学生们在接触起来比较容易掌握。
我在教学过程中设计了以下几个环节来进行教学:
一、复习 通过复习已学的简单平面图形面积来加深学生的印象,并给新讲的内容做了铺垫。对完成好的同学做出奖励——由组合图形拼成的图画,从而引出今天要学的新内容——组合图形。
二、新授 由现实生活引入,由于我校在不断地建设,我们还急需一个操场做活动场所。请同学们帮忙算操场的面积来进入今天的教学,利用了学生对新事物的好奇心,以及爱帮助人的心理来提高学生的学习兴趣,让学生分组合作,锻炼了学生自主探究,解决问题的能力。并由学生汇报结果,讲出自己的做题依据。完全放手给学生展下自我的机会,让学生真正成为学习的主人。最后帮助学生总结出“组合图形的面积”的计算方法:分割法、添补法、割补法。
三、练习 让学生通过练习,来加强自己的掌握能力,并让学生融会贯通。
四、小结 让学生谈自己在本节课中所得的收获,来进一步加深学生的印象。
在教学过程中,我还发现了很多自己的不足之处,在今后的教学中,应引以为戒。
《组合图形的面积》教学反思9
组合图形面积是学生学习了长方形、正方形、平行四边形、三角形、梯形的面积的基础上进行教学的,是日常生活经常需要解决的问题。在本节课的设计和实施中,我根据新课程的理念,进行了大胆地尝试,达到了良好的教学效果。主要有以下几点:
一、复习铺垫,沟通新旧知识的联系
组合图形的'面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。在学习新知之前,我组织学生通过复习,回忆旧知,从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫。
二、自主探索,感受解题策略的多样性
学生是学习的主体,只有让学生亲身经历知识的形成过程,这样学得的知识才最深刻。教学中,我放手让学生自主探究,合作交流,亲身经历计算组合图形面积的过程,重视把学生的思维过程充分暴露出来。在自主探索、解决问题中感受解题策略的多样性。
三、有效利用多媒体,提高课堂效率
运用多媒体等现代化的教学手段,能把教学过程组织得更生动、形象,有利于学生进行总结归纳、抽象概括,主动参与知识的形成过程。教学开始,我用动态演示几个基本图形的组合,巧妙地让学生理解了组合图形的定义;理解求组合图形面积的多种方法时,我用生动地分解组合图形,让学生一目了然,加深了学生对知识的理解和掌握。
四、让数学回归生活,提高实践能力
心理学研究表明,当学习内容与学生熟悉的生活实际越贴近,学生自觉接纳知识的程度就越高。教学中,我向学生展示了生活中的组合图形,设计了让学生解决“做一面中队旗至少要用多少布”的生活问题,课后巩固环节让学生运用所学的知识帮助老师解决生活中铺地板的实际问题,学生从周围熟悉的事物中体验、感悟了数学,感受到数学就在我们身边。同时,激发了学生从生活中寻找数学问题的兴趣,提高了学生解决实际问题的能力。
《组合图形的面积》教学反思10
本节课的内容是在学生学习了平行四边形、三角形、梯形面积计算的基础上进行教学的。通过计算组合图形的面积,有利于综合利用平面图形面积计算的知识,进一步发展学生的空间观念。
成功之处:
多种方法解决问题,发展学生的创造性思维。在例4的教学中,首先让学生观察房子侧面墙的形状是有哪几个基本图形组合而成的,然后让学生独立解决问题,学生对于这类问题没有感到困难,非常轻松的解决了问题,从而得出第一种算法:(1)组合图形的面积=三角形的.面积+正方形的面积:
三角形的面积=5×2÷2=5(平米房)
正方形的面积=5×5=25(平方米)
组合图形的面积=5+25=30(平方米)
接着教师抛出问题,你还有不同的解决问题的方法吗?一石激起千层浪,学生通过教师的发问引起思考,从而出现了如下算法:
(2)组合图形的面积=2个梯形的面积:
梯形的面积=(5+5+2)×(5÷2)÷2
=12×2.5÷2=15(平方米)
组合图形的面积=15×2=30(平方米)
(3))组合图形的面积=长方形-2个三角形的面积:
长方形的面积=(5+5+2)×5=35(平方米)
2个三角形的面积=5÷2×2=5(平方米)
组合图形的面积=35-5=30(平方米)
这样通过思维的碰撞,产生出智慧的火花,同时也揭示了组合图形面积的计算方法:一是分割法:把一个组合图形分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。二是挖空法:把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。三是割补法:就是把图形的某一部分割下来补到另一部分上,使它变成一个我们已学过的几何图形,然后再进行计算。四是折叠法:把组合图形折成几个完全相同的图形,先求出一个图形的面积,再求几个图形的面积之和。
不足之处:
学生对于多种方法的应用还存在不灵活的现象,个别学生出现拆分的图形的数据不完备,导致出现错误。
再教设计:
基本方法掌握,主要从和与差的两种方法教学会比较好一些。
《组合图形的面积》教学反思11
课题
人教实验版五年级数学上册五单元的第四课《组合图形的面积》
教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的`隐含数据条件,鼓励学生一题多解。
学情分析
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。学生已经系统学习了平行四边形、三角形与梯形的面积的计算方法。但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
教学目标
(1)在自主探索的活动中,了解平面组合图形的特点,理解计算组合图形的多种方法。
(2)能根据各种图形的特征和条件,有效的选择计算方法,实现算法多样化和合理化。
(3)结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
教学重难点
教学重点:在探索活动中,理解组合图形面积计算的多样化。
教学难点:渗透转化的数学思想,实现组合图形面积计算的合理化。
关键:学会运用“分割”与“添补”的方法计算组合图形的面积
《组合图形的面积》教学反思12
在本次公开课活动中,本人执教的课题是五年级上册的《组合图形的面积》,在本节课的教学设计和实施中,我根据《课程标准》及新课程的理念,进行了大胆的尝试。《数学课程标准》的基本理念中指出:数学源于生活而又应用于生活;学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。在教学《组合图形的面积》这一课中,我针对这一理念,创设了生动的生活情境,精心设计了学生的学习内容。
1、组合图形面积计算是在学生学习了长方形、正方形、平行四边形、三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的'问题。所以在导入新课前,我引导学生复习这些简单图形的面积,为新知识的学习做好铺垫。
2、为了让学生感受到数学无处不在,我在导入时让学生举例生活中的组合图形,并以求一面墙的面积进入新知识的探究。激发学生的探究欲望收到很好的效果。
3、我认为本课时的重点是让学生发现、理解、掌握计算组合图形的面积的方法和策略。所以在教学中,重点放在让学生思考、理解把组合图形分割或添补成已经学过图形的方法上,明确计算组合图形面积的思路。让学生动手画一画、动脑想一想、用嘴说一说,把组合图形转化为已经学过的简单图形,并从中总结出用分割法或添补法。
《组合图形的面积》教学反思13
本节课体现以学生为主体、教师为主导的教学理念。以充分发挥学生作用为主线,为学生创设自主探索的情境,以培养学生能力为宗旨展开教学。在探索组合图形面积的过程中,我主要通过多媒体课件演示以及让学生亲自动手操作等手段。在教学过程中,十分注重分析、解题方法的指导,让学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中。在发展学生空间观念的同时,使学生能够综合运用已有的知识解决问题,享受到体验成功的愉悦。现针对本节课实际课堂教学效果进行反思。
1、组合图形的面积是学生学习了长方形、正方形、平行四边形、三角形和梯形的面积计算的基础上进行教学的,上课的.时候我一开始设计了复习基本图形的面积,为下面计算组合图形的面积打下基础。接着让学生用长方形、正方形、平行四边形等基本图形拼出一些美丽的图案,体会组合图形的特点,以此引入组合图形做好了准备,以旧引新顺其自然。又认识了生活中的组合图形,感知数学无处不在,有了这些基础学生很顺利的进入新知识的探究。
2、运用现代化的教学手段贯穿教学始终
这节课的教学,我充分发挥多媒体课件的作用,一步一步地引导,层层推进,把学生引向要解决的问题。既向学生演示了组合图形的组成与分解过程,给学生提供直观、生动形象的演示,有效地吸引了学生注意力,激发了学生学习的积极性,使学生主动参与知识的形成过程,进一步加深对组合图形概念的理解,密切了数学知识与现实的联系,同时又把教学过程组织得更生动形象,使学生从中领悟了组合图形的解题思路与方法,从而提高课堂教学效率。
3、 本节课充分发挥了学生的主体作用,大胆尝试放手,相信学生的能力,鼓励学生主动探索,给足学生时间和思维的空间,尽最大限度地发展学生的观察思考能力和探究能力,增强了学生的学习兴趣。
我个人认为,组合图形是由几个简单的基本图形组成的图形,解决这种问题,不仅可以拓展孩子们的思维和空间想象能力,而且可以渗透多角度思考问题和解决问题的策略。可能我注重的是方法和策略的引导,孩子们虽然掌握了求组合图形面积的方法,但是在求面积时缺乏思维的条理性,这时在今后的教学中需要加强的。
《组合图形的面积》教学反思14
新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。
在本节课的设计和实施中,我根据新课程的理念,进行了大胆的尝试,在探索组合图形面积的过程中,注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,利用已有的知识解决问题,达到了良好的教学效果。突出的特点是:
1、充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。在教学中,学生探究出了比教材还多的方法,有的方法让老师都没有想到,这正是学生发散思维的具体体现。也为知识的'精彩生成奠定了基础。
2、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法,学的主动积极、生动灵活。在探究学习中,学生懂得了把复杂的只是转化为学过的知识,这样的学习方法让学生受益终生,也实现了预期的教学效果。
人无完人。课,也是在不断总结中得到提高。在本节课的教学中,教师语言不够精练,学生的语言不够严谨,以及向全班汇报结果的形式比较单一等等,这都有待于在今后的教学中更多地去锤炼,进一步加以完善。
《组合图形的面积》教学反思15
这节课是学过基本图形的面积后的一节新课,在新课快要结束的时候,我组织学生开展反思活动,让学生回顾一下,这节课我们学习了什么?在研究过程中碰到了哪些问题?我们是怎样解决这些问题的?有什么好的方法或建议吗?
这一系列的反问,让学生经过梳理后,纷纷表达了自己的反思与收获生。生1:今天我们研究的是组合图形的面积计算,它就是由一些基本图形组合而成的;生2:这些图形的面积不能直接计算,要把它转化成基本图形就可以计算了;生3:转化的.方法有两种,一是分割法,用合并求和的方法,也就是加一加来计算,另一种是添补法,用去空求差的方法,也就是减一减来计算;生4:这种转化方法在数学学习中经常用到,如平行四边形的面积推导,三角形梯形面积推导等,除数是小数的除法转化成除数是整数等,因此我们要好好掌握。学生的发言让我感动,同时给予的点评和肯定,我发现只要在教学中给学生充足的思考、交流空间,学生就会给你一个大大的惊喜。
《组合图形的面积》教学反思16
一、教材分析:
这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
二、学情分析:
根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。
三、教学目标
1、掌握组合图形面积计算的方法并正确计算。
2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,初步解决生活中组合图形的实际问题。
四、教学重点和难点
1、掌握组合图形面积的计算方法。
2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。
3、学会运用“分割”与“添补“的方法计算组合图形的面积。
五、教学过程
(一)、谜语激趣,以旧引新
(课前)将一些教学用具的纸片发给学生
1、谈话导入,课件出示谜语。(①草地上来了一群羊。打一水果名称 ②又来了一群狼。 打一水果名称)
(1)思考:谜语的谜底是什么?(①草莓 ②杨(羊)莓(没))设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。
(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。)
(3)学生回答后教师出示答案,从而导出新课,并板书课题。
设计意图:用猜谜语的形式让学生来明事理,从而导出新课。
2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)
(1)同桌交流、讨论。(小动)
(2)代表回答。
(3)复习平面图形面积公式。
设计意图:巩固所学几种平面图形的面积公式及计算方法。
(二)、自主探究新知
1、小组合作,交流探讨。
(1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。
(2)2人小组讨论并计算出图形的面积。(小动)
设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。
2、自主合作,探索方法。
课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。(有图例)
(1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)
(2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法。)计算图形的`面积。
(3)根据学生的解法,教师进行分析、点评。
设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。
(三)、联系实际,巩固拓展
1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。
2、学生独立完成,代表发表自己的解题方法。
3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。
设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。
(四)、回顾全课,小结
1、学生小结 2、教师总结 3、布置作业。
设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。
六、板书设计
组合图形的面积
组合图形分割、添补 基本图形
《组合图形的面积》教学反思17
在
1、例1第二种算法教学失败。
教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。
我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?
【再教设计】
再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。
2、作业的格式教学失败。
教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。
其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。
【再教设计】
要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的.行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧
困惑:当把图形变形后的列式该如何评价?
有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)(52)这种列式可行吗?
组合图形是由几个简单的图形组合而成的,一般是要将若干个简单图形的面积相加(或相差)求的,那么这种经过转化只需用简单图形面积公式求的结果的方法可行吗?
《组合图形的面积》教学反思18
本课是小数数学的空间与几何的内容,与生活联系紧密,有较强的实用性。全课主要借助自主个性学习平台,开展自主探索、交流学习的方式进行学习。
主要的流程是:
1.先以风筝制作活动的作品(由学过的基本图形组合而成)引入,激发学生兴趣。
2.布置自主复习基本图形如平行四边形、三角形等的面积计算的推理,渗透转换思想。并由学生来向其他同学来介绍各自的转换方法。
3.新授组合图形的面积计算,通过观察生活中的图形,用自学方式进行。
4.交流自学结果,总结求组合图形面积的基本思想:合理割补、分块求积及加减组合。
5.队旗的组合图形实例的教学,让学生实践分块、加减及割补的方法。
6.练习新知,自主选择不同难度的进行练习。
7.交流练习、集体订正。
8.课堂小结,并向学生介绍自主学习平台的使用,使学习的'时间与空间都向课堂以外作出延伸。
优点:
1.以风筝这一生活中组合图形实例导入,能在一定程度上激发学生兴趣。同时,更能在展示的时候,使学生初步认识到组合图形与基本图形之间的一点联系。
2.用自主复习(练习旧知)的方式,边操作边计算,使学生既完成了旧知的巩固练习,为接下来作好计算上的必要准备,更用平行四边形等图形的推理中的转换思想作引导与渗透,更为进行求组合图形的面积作好思想与方法上的准备。
3.在自主旧知复习的终了,教师通过信息技术的合理运用,将所有学生的答题情况汇总,并能根据总体情况及照顾个别学生的特殊情况作出合理的教学调整,因材施教。
4.教师在学生自学新知时,能布置清楚学习的目标、步骤,更有清楚的方法指导、资源的提供,为学生的自主学习提供必要的支撑,使学生有目标、有步骤、有方法、有内容、有素材。
5.通过学生自学,动手试做练习等,让学生在做中学,充分体验。汇报自学成果,由学生总结出解决的方法,让学生在汇报中得到成功的感受,以刺激学生乐于学。
6.队旗的实践中,由学生提出分块解决问题,将数学的学习运用于生活中,也培养了学生的实际运用意识,体验数学的有用性,但从整个教学过程中,可以发现这也是有限的。
7.练习新知时,自主进行,可以根据学生自己的情况进行不同的内容、层次的学习。
8.在小结时,再次点明自主学习平台的优势,鼓励学生在课后校外等再学习,拓展延伸了学习的时间与空间。
不足与改进设想:
1.在以风筝导入时,语言并不够生动,在情感方面未能真正起到鼓动,兴趣未必能得以很多程度的激发。建议:如果能在教师出示1、2个风筝图形后,再由学生来介绍个把自己见过或想到的由基本图形组合而成的风筝形状,那样会起到更好的效果,让材料更贴近学生,更能激发兴趣。
2.同样在导入时,出示风筝图,但只是简单地看,而未作合理地利用与分析。建议:如教师能在此作出适当地引导,问“你发现各风筝是由什么图形组合而成的?”让学生更鲜明地知道组合图形与基本图形的关系。
3.练习新知时,虽然教师采用自主选择适合自己的进行练习,但是这所有的内容都是开放的,学生对自己的自评能力通常会过高或者过低,如何让学生真正在这种形式中选择到适合自己的内容。建议:如果能在这一环节,教师能对学生的练习内容的选择上起到一定程度的限制,让学生在一定自由的范围内进行自主选择的练习,这样更能适合每位学生的发展。
4.在小结后,出现了一个七巧板的拼图游戏,教师可能是想调动学生在课后继续学习的积极性而设计的,但学生并未体验,实际上是形同虚设。建议:但如果将此内容换成其他内容,或者引导学生在生活中再去探索组合图形的实例并解决实际问题,并在相关的网络平台上交流学习心得体会会更有效果,更能培养运用意识,体验数学的有用性。
5.建议:(接上面4)将七巧板的游戏放在一开始的导入阶段,让学生在玩中进入学习状态,更自然,可能要比风筝可能激发学生的兴趣。
6.组合图形这一内容,是小学数学中的几何板块,与生活联系紧密,所以应尽可能借此培养学生对数学的运用意识。而本课中教学的例题、练习等都相对离学生较远,应考虑再寻找更近的素材。
7.过分依累于信息技术这一平台,将所有的学生的练习书写等都在电脑上进行,虽能方便教师汇总学生的学习情况,调整教学,但也有以下一些不足:
(1)可能会受到学生实际电脑的操作水平的限制,可能会给此类同学造成学习上的不利;
(2)也因此教师没能在板书中出示解题的范例,学生没有明确的规范,并不能帮助真正需要这些帮助的同学;
(3)在电脑上答题,书写过程中出现“*”“/”等符号来表示“×”与“÷”,对于数学这一学科的实际要求,是否规范有待商讨。
《组合图形的面积》教学反思19
本节课是在学生学习了基本平面图形面积的基础上进行教学的。注重让学生动手操作、合作交流、比较反思等活动,使学生理解和探索组合图形的面积。在发展空间观念的同时,渗透解决问题的思考策略,培养了学生解决问题的能力,具体体现以下几点:
一、借助经验,理解概念。
学生通过观察课件生活中物品的图片,使学生初步感知生活中许多实物的表面都是有几个简单图形组成的。借助主题图的演示,从具体的实物抽象出几何图形,使学生进一步加深对组合图形概念的理解,密切了数学知识与现实的联系。借助学生的介绍,抽象出什么样的图形是组合图形。这样通过一系列的直观感知,使学生对概念的理解充分。
二、尝试应用,掌握方法。
以计算小华家客厅面积为例,引导学生观察图形,估一估、算一算。通过试做汇报交流、比较观察。在探索策略前,先安排估算的环节能起到培养学生估算意识的作用,同时又能让学生在估算的时候,潜移默化地运用添补和分割的转化思想。接着直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的'自主探索的空间。最后让学生找各种方法的共同点,水到渠成地由学生揭示出转化思想,进而把转化思想根植于学生心中;欣赏组合图形的图案,给学生以美的享受,使学生感受到生活中组合图形的存在,加强数学与生活的密切联系。
三、综合应用,培养能力。
在应用阶段,教师精心设计了不同层次的几个问题,提高了学生的学习能力。通过把组合图形分成已学过的图形,并与同伴交流自己的想法。借助较复杂的组合图形的面积,运用不同分法,发展学生的空间观念。通过计算队旗的面积,体现算法多样性,进而选择简便的解决办法;通过计算一块硬纸板剪下剪下4个边长是4厘米的小正方形后,做成一个没有盖子的盒子,算剪后纸板的面积,进行独立计算、选择合适数据,增强学生解决实际问题的能力,体验数学的实用性。
四、总结全课,学习解决问题方法
引导学生对本节课学习内容进行回顾,引导让学生在总结上有所提升,在知识方面,还有数学方法和数学思想方面都应该有所收获。
对于本节课,也暴露出一些问题:
1.各环节时间的分配。课前没有做好充分的准备,多媒体使用不熟练,本节课在各环节的分配上有所欠缺,需要对各环节有个提前预设,需要适当的引导孩子们在有效的单位时间内进行学习,达到预期的学习效果。课堂进行中,给于人的印象为赶,导致最后一题练习没办法完成。
2.语言艺术。在引导孩子们过渡环节以及布置任务的目的性上不明确,导致花费时间在纠正孩子们对于不同的答案的判断上。
3.在课堂生成上,没有及时的进行思考,导致一些生成没有及时的解决,忽略后,孩子们的质疑没有解决,也不能达到学习的效果。
《组合图形的面积》教学反思20
在本节复习课的教学过程中, 我从学生已有的学习经验入手,注重让学生通过动手操作、合作交流、比较反思等活动,使学生利用转化思想,理解和探索组合图形面积,在发展了学生空间观念的同时,培养了学生解决问题的能力。
一、注重利用已有学习经验,为探究新知做铺垫
为了让学生认识组合图形,我首先复习已经学过的几种平面图形,为后面探索组合图形面积做好铺垫。
二、自主探索,形成解决问题的基本策略
探索活动一定是在学生自主思考的基础上进行。所以在探索计算方法时,我先给学生独立思考的时间,让学生在客厅平面图上画一画,写一写。通过自主探索,小组交流,思维活跃的学生想出了三、四种不同的方法,对于基础差的学生,也会有一种自己的方法,让学生充分体验到成功的乐趣,从而真正意义上的成为了学习的主人。
三、以自主探索、合作交流为主要学习方式,让学生在活动中掌握数学知识和技能新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。
数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。整节课我发挥了引导者的作用,学生有较大的空间发表自己的想法,在认识了组合图形的概念后,我让学生先在课堂上试着找出计算组合图形面积的'方法,然后在四人小组内充分地交流,再在全班反馈。学生踊跃发言,想法多种多样,超出了我的预料,我根据学生的发言进行了适当地点拨,从找出方法提升到讨论分割的合理性,整个过程轻松自然,学生发言非常精彩。整个新授过程,我都是让学生自主探索得出结论,体现了浓浓的探究氛围。同时,在本课的教学过程中,我十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法,让学生通过一题多解的训练,培养发散思维,体验成功的愉悦。
四、比较反思、逐步形成评价与反思的意识
多种方法,我并不要求每个学生都去掌握,而是让学生选择自己喜欢的方法去计算组合图形面积,并阐述理由。学生通过比较,选择了比较简单的分割方法计算了,我顺势引导,为什么你们选择了这些方法计算(简单分割成2个基本图形的),而不选择哪些方法呢(分割复杂的方法)?学生总结出:计算组合图形的面积,对于分割的方法,分割图形越简洁,其解题方法也将越简单。我再次加以强调:在条件允许的情况下,转化的越简单,越好。让学生意识到要从多角度来思考问题。
五、通过拓展练习,进一步转化其他转化方法。
学生经过前面的探究知道了利用分割法和添补法可以把组合图形转化为学过的基本图形,来计算面积。为了帮助学生掌握更多的方法,我设计了通过割补和平移的方法计算组合图形面积的练习,拓展了学生的思维。
总之,在这节课上,学生不但学会了用转化的思想计算组合图形面积在数学思想和方法上有收获。学会了如何从多个角度去思考问题,做到“举一反三”。当然也还有很多细节的地方需要改进,比如教师语言的精练度,学生操作的方式,以及汇报的形式等等,这都有待于在今后的教学中进一步加以完善。
【《组合图形的面积》教学反思】相关文章:
组合图形的面积的教学反思06-30
《组合图形的面积》教学反思06-01
组合图形面积教学反思09-11
《组合图形面积》教学反思08-29
《简单组合图形的面积》教学反思10-26
《组合图形面积的计算》教学反思02-23
关于《组合图形的面积》教学反思06-24
《组合图形面积的计算》教学反思06-25
《组合图形面积》的教学反思范文07-01