身为一名到岗不久的人民教师,我们需要很强的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,写教学反思需要注意哪些格式呢?以下是小编精心整理的《平行四边形的面积》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《平行四边形的面积》教学反思 篇1
这节课我们所学习的的内容主要是平行四边形面积的计算。是在学生以前学过的长方形的面积和平行四边形认识的基础上学习的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。
一、课程开始,我先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?
平行四边形的面积怎么求呢?猜想平行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。
二、注重学生数学思维的发展
在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现平行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出平行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、不足之处
本节课还有一些不足之处。在进行把平行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。
《平行四边形的面积》教学反思 篇2
教学片断中,学生兴趣盎然,始终以进取的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是经过自主探究得到了知识,获得了发展。主要体此刻以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学资料来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们明白,仅有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科资料的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
上述教学片断中,教师带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的资料产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,就是期望感到自我是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要异常强烈。上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改善,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题—把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。之后教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理。
《平行四边形的面积》教学反思 篇3
新课标指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。在《平行四边形的面积》一课的教学中,我经过让学生动手实践,自主探究,让学生经历了知识的构成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学专业思想方法的渗透。
我们在教学中一贯强调,授人以鱼,不如授人以渔,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学本事。在这节课中,先让学生回忆平行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出能够用数方格的方法来求平行四边形的面积。把这两个图形按每个格1平方米的方法来数,数的过程中提示学生:能够把不满一个格的按半个来数。学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有本事的学生向转化的方法靠拢。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地经过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一齐来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以平行四边形的面积=底х高。学生掌握了平行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题供给了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维本事的发展。
三、分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着重基础、验本事、拓思维的原则,设计了基础练习(算出下头每个平行四边形的面积。);提升练习(量出平行四边形的底和高的长度,并分别算出它们的面积。);
发散练习(下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还能够画出几种形状不一样而面积相等的平行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生应对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。
四、需要改善的地方
本节课的不足之处有:在进行把平行四边形转化为长方形时,书上虽只给出了两种方法,可是实际上有很多不一样的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。并且这个环节过后,忘记强调一下,要沿着平行四边形的高剪下,才能平移拼成一个长方形。让学生说的部分还是显得很仓促,自我急于把正确答案给出,这是迫切需要改正的。
教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改善,我们的课堂就会更加精彩。
《平行四边形的面积》教学反思 篇4
孩子们已经认识了三角形、平行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了平行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,要体验图形平移、旋转等变化……感觉任务非常艰巨。
平行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。
邻边相乘(长×宽)的面积计算方法是学生掌握的已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的方法,将一个平行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“平行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。
经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的改造,沟通“教”与“学”的通道。
在学生坚信这个平行四边形面积=底×邻边=9×6=54平方厘米时,呈现格子图。于是学生将平行四边形的面积锁定在(8×4)32平方厘米和(10×4)40平方厘米之间。这一过程不仅学生认识到长方形面积和平行四边形面积的差异,也让学生在面积的度量层面沟通了平行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到平行四边形的面积计算公式就水到渠成了。
《平行四边形的面积》教学反思 篇5
《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。
3、比较等底等高的平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。
《平行四边形的面积》教学反思 篇6
《平行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与平行四边形之间的特殊关系,并提出大胆的猜想。通过动手操作验证的.方法推导出平行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。
一、导入环节中的得与失
得:复习长方形的面积为新知探究做好铺垫。
失:从复习旧知到情境导入衔接不够自然,略显牵强。
二、探究新知环节中的得与失
得:先用数方格得方法探究平行四边形的面积时,处理的较为细致。动手操作时,也让学生提前准备了学具,初步回忆了其特点,充分发挥学生主体性。
失:在探究环节,不能很好的利用学生的错误资源,来让学生纠其错误,达到巩固新知的效果,在学生说出其变化时引导不到位,导致学生得出平行四边形面积公式有些被动。
三、巩固练习环节中的得与失
得:最后一道题设计较好,让学生知道算平行四边形的面积时要选择高与相应的底。
失:时间安排的原因,处理的过于粗略。
之后的教学中,备课时,不仅要在备教材这下功夫,也要在备学生这多努力,多预设几种学生可能出现的情况,应该如何应对,做到全面把控课堂。
《平行四边形的面积》教学反思 篇7
学生的自主探究是小学数学教学研究的一个热点,有许多问题需要我们深入研究。例如,什么是数学教学中真正的探究活动?如何提高探究过程的有效性?带着这些问题,我设计了“平行四边形的面积”一课,力求体现《数学课程标准》的一些新的数学理念,在教师的适当引导下,让学生积极主动参与知识形成的过程,培养学生动手操作、大胆猜测、合作探究、概括延伸的能力,提高探究活动的效率。
明确目的性,是科学的探究活动的一个基本特征。因此,把学习引向重、难点,或学生疑惑的地方,让学生有效地参与,是培养他们课堂自主探究的前提。在新课伊始,我设计了“玩一玩”的活动,通过“玩”激发学生兴趣,将新旧知识紧密结合在一起,引导学生发现问题,从而自然引入到面积的探究中。经过长期训练,学生就逐步掌握了学习的方法,消除了对学习的畏难、厌烦情绪,使他们带着良好的心态投入学习活动,学生在课堂中充分显示自己的才华。
本节课中,我特别重视学生直觉思维的培养。因为猜想是直觉思维的一部分,教学中我在两个环节中均注意设置猜一猜:一是平行四边形面积的大小跟哪些条件有关;二是猜一猜平行四边形的面积跟底和高有什么关系。鼓励学生对问题的答案作出合理的猜测,有助于培养学生的创新意识,使他们思维更活跃、更发散。进而为学生进一步学习创设良好的学习氛围,让学生积极参与到知识的形成过程中,让学生经历猜想、操作、验证、发现等环节。通过独立思考、合作交流等形式,了解平行四边形面积公式的来龙去脉,真正体现了主体教育的原则。
本节课我力求通过学生的自主学习、合作学习探求知识的形成过程,教师只是一个合作者、引导者、促进者。例如,平行四边形面积公式的推导,是学生利用手中的平行四边形纸片,利用手中的工具,采用喜欢的方式去探究,验证自己的猜想。并通过生生、师生的交流互动,逐步归纳、总结出平行四边形面积公式。
反思本节课的教学,我觉得要提高数学探究活动的有效性,就要做到:
1、让学生的探究有明确的目的性;
2、为学生创设良好的学习氛围;
3、教师的有效指导;
4、生生、师生的互动生成。
《平行四边形的面积》教学反思 篇8
一、精心创设情境。
心理学研究表明,学习材料与学生的生活经验相联系时,学生对学习最感兴趣,会觉得内容亲切,易于接受和理解。创设情境,将静态的生活资源加工成动态的数学学习资源,让学生感受到熟悉的活动情境蕴含着许多奇妙的数学知识。数学是从现实生活中抽象出来的,生活中处处有数学,把熟悉的生活事例引入数学课堂,使数学内容具有丰富的现实背景。本节课,精心创设情境,沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体,既让学生对数学倍感亲切,又利于学生理解数学,热爱数学,设定恰当的生活情境和利用真实的生活原型展开数学活动,充分体现了数学与现实世界的密切联系,更重要的是,能让学生学习富于真情实感的,能动的,由活力的知识,使学生的情感世界获得实质性的发展,提升。
二、努力营造学习氛围。
为学生营造宽松、民主、和谐的学习氛围,源于教师对学生真挚的爱。在教学中,我关注、激发、保护、帮助、鼓励学生,使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。创设良好的氛围,使每个学生都有展示自我的机会,都敢于发表自己的见解,培养学生善于倾听,善于欣赏他人的良好品质。
三、鼓励学生大胆猜想。
鼓励学生大胆猜想,调动学生的思维,培养学生的创造能力。再教学伊始,就让学生大胆猜测,平行四边形的面积可能怎样计算?由于受长方形,正方形面积计算方法的影响,有学生说是底乘高;也有学生受知识的负迁移,说是邻边相乘。两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。鼓励孩子们大胆猜测,有利于孩子们在今后的学习中愿意把自己的“原始”思维状态表现出来,这是一笔有价值的学习资源。
四、注重让学生动手操作。
苏霍姆林斯基曾说过:“手是意识的培育者,又是智慧的创造着。”操作实践可以让每个孩子既动脑、动眼又动手,调动各种感官参与学习,积累感性认识,深化理性认识。既能够培养学生的操作能力,发展学生的智力,又能培养学生的探索精神和求实的科学态度。在本节课的教学中,让学生思考,讨论,平行四边形的面积可以怎样计算?当学生认为能将平行四边形转化为长方形时,让学生按照自己的设想动手操作使学生的知识,经验智慧充分发挥作用,通过剪拼,然后让学生交流各自的剪拼方法,结果学生想出了三种剪拼的方法,然后引导学生比较转化前后的图形探究出平行四边形的面积计算公式。每个学生通过操作活动,经历知识的“再创造” 的过程,获得数学知识,学得主动,让学生在获取知识的过程中获得学习数学的方法,获得探索数学知识的体验,获得多种能力的提高.
五、充分发挥交流的作用。
学生的数学学习过程中,交流是不可或缺的,交流可以帮助学生在非正式的直觉的观念与抽象的数学语言、符号之间建立起联系,交流可以加深学生对数学概念和原理的理解,教学中,我选择适当的时机组织交流,提供具体的情境让学生去表达、倾听,在与他人交流中展示自己的原始策略,了解同伴的学习策略,发展自己的学习策略;在与他人的交流中开阔眼界,丰富自己的知识,完善自己的想法或认识。
《平行四边形的面积》教学反思 篇9
《平行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的资料。在这节课中,我主要讲授的第一课时的资料。在教学中,我经过让学生动手做一做,感受“转化”的思想,进而理解平行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:
优点
一、注重学生的课前预习工作,让学生做好了学习新知的准备
在教学前,我先让学生预习《平行四边形的面积》一课。经过预习,学生明白了这节课的学习重点(掌握平行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(平行四边形卡纸、剪刀)。
二、注重课堂上学生的自主学习,让学生成为学习新知的主人
在探究平行四边形的面积计算方法时,我引导学生思考“如何将平行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原平行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作本事、语言表达本事、逻辑思维本事都得到充分的锻炼。再组织在全班交流中,学生的语言表达本事、逻辑思维本事又得到了进一步的提高。由此,对平行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。
三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。
在课前,我修改了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。
不足与相应措施
学生之间的评价太少,以至于学生看不到自我与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。
《平行四边形的面积》教学反思 篇10
我经过让学生自己动手用剪,平移,拼的方法进行问题转化,验证了用“底乘高”的猜测是正确的,经过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。得出平行四边形的面积=底×高。本节课因为是让学生自己动手操作,所以学生兴致很高,课堂气氛也较活跃。我认为本节课的练习设计也很合理。
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗怎样变化如果任意拉这个平行四边形,你会发现什么什么情景下它的面积最大设计意图:经过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的本事。
第三、渗透“转化”的思想。“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,构成积极主动的探究氛围。
《平行四边形的面积》教学反思 篇11
前三个单元我一直要求学生每课预习,这种做法使得课堂内教学效率大大提高。但今天的内容我同样布置了预习,效果却不太理想。分析原因可能是预习后学生的动手操作少了一份探索成功后的欣喜,少了一些不同剪拼法的交流,学生积极性不高。针对这种现象,我准备采取两种不同策略进行对比实验。《三角形的面积》我不要求学生预习,上课时根据学生情况灵活调控。梯形的面积我仍旧请同学们预习,但在预习中我布置一项作业,请他们思考,除了教材中的转化方法,你还能将梯形转化成我们已学过的其他平面图形吗?
其次,本课不太成功的原因是今天有近一半的学生没有带学具来,他们无法参与到操作过程之中,影响了教学效果。看来带学具要反复强调,以确保教学活动落实。
内容调整:建议将练习十五第5题调整到今天教学。因为此题不仅可以巩固面积公式,而且还能加深公式的理解与掌握。此题教学完后,可请学生在钉子板上围一个与指定长方形(或平行四边形)面积同样大小的平行四边形。
学情反馈:从学生做练习十五第2题看出许多学生不会作高,要及时查缺补漏。
《平行四边形的面积》教学反思 篇12
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;
生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;
生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
【《平行四边形的面积》教学反思】相关文章:
平行四边形的面积教学反思07-30
平行四边形面积教学反思06-27
平行四边形面积教学反思 06-29
平行四边形的面积教学反思05-27
《平行四边形面积》的教学反思07-04
平行四边形的面积教学反思06-21
平行四边形的面积教学反思01-03
《平行四边形的面积》的教学反思01-05
《平行四边形的面积》教学反思08-09
《平行四边形面积》教学反思11-15