在不断进步的时代,教学是重要的任务之一,反思过往之事,活在当下之时。那么大家知道正规的反思怎么写吗?以下是小编整理的《等腰三角形的性质》教学反思(精选9篇),仅供参考,欢迎大家阅读。
《等腰三角形的性质》教学反思 1
在新课标中十分强调“过程”这一词,既要重视学生的参与过程,又要重视知识的再现过程。有了学生的参与,课堂教学才显得生机勃勃,学生才会变成课堂学习的主人。知识的再现过程有助于让学生了解所学知识从何而来,解决何种问题,在有限的时间内探究知识,主动获取知识。
本节课重点是让学生通过动手折纸得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。授课过程分为4个环节:
⑴ 感受生活中的等腰三角形。在学习本节课之前,学生早已认识了等腰三角形,所以在上课前引导学生寻找“身边的等腰三角形”,带领学生走进《等腰三角形的性质》的知识世界。
⑵ 形象认识等腰三角形的性质。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此对于本环节的学习学生感觉很轻松,积极参与探究等腰三角形的性质。
⑶ 通过折纸探究等腰三角形的性质。等腰三角形的“等边对等角”、“三线合一”的性质都是由其具有轴对称性质引出的,学生得出“等腰三角形的两底角相等”较为容易。由于担心“三线合一”的性质学生会感到困难,我特意介绍了三角形中的角平分线、高线和中线,并且为学生们设计出对应表格,让学生填出“三线合一”的性质。这样做降低了“三线合一”的性质得出的难度,学生较易理解。但是我想如果让学生自主发挥,时间虽然多浪费一些,课堂上不确定因素虽然多了一些,但是学习效果应该会好得多!
⑷ 运用等腰三角形的性质解决实际问题。本节课的另一个重点是学会应用等腰三角形的性质解决实际问题。课堂上,完成了一些角度计算的填空后,侧重于让学生书写解题过程。我感觉到新课标教材中对学生解题步骤书写的规范程度要求比较放松,但是我总是认为如果让学生养成严谨的书写习惯对于培养学生思维的严谨性有很大的'帮助,因此经过近一个学期的严格要求和训练,我们班虽然还有一部分学生对此感到困难,但是大多数学生都能够比较顺利地进行解题步骤的书写。
教学实践中,提倡数学教学应更关注学生的认知特点,尽量让全体学生学有所获。本节课从总体上看,学生基本上掌握了等腰三角形的“等边对等角”及“三线合一”的性质,学会了等腰三角形性质的运用,较好地完成了教学目标。但我总还是觉得,这样上课,不能满足学习基础较好的学生,他们会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体教学效果可能会更好一些。
《等腰三角形的性质》教学反思 2
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。
性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话。
一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”。
三句话是“1、等腰三角形的顶角平分线平分底边、垂直于底边;2、等腰三角形的底边上的中线平分顶角、垂直于底边;3、等腰三角形的底边上的高平分顶角、平分底边。”
13.3等腰三角形的性质教学反思——《初中数学解题能力与解题策略的研究》课题研究阶段材料六句话是“1等腰三角形的顶角平分线平分底边;2等腰三角形的顶角平分线垂直于底边;3等腰三角形的底边上的'中线平分顶角;4等腰三角形的底边上的中线垂直于底边;5等腰三角形的底边上的高平分顶角;6等腰三角形的底边上的高平分底边”。结合图形概括起来就是:在ABc中,AB=Ac,下列论断∠BAD=∠cAD,BD=cD,AD⊥Bc中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。
性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,安排了两个同学在黑板上板演,提升学习的六道题没有讨论。要培养学生讨论和自觉纠错的学习习惯。
性质在证明中的应用,集体备课安排的两道题很好,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”,课堂至此,到了思维的最高潮,两道题最优解法的得到是学生取得成功的最好感受,这是我觉得提升学习的一道题可以不要了,留有更多的时间进行课堂小结,本课的课堂小结还应当更充分些。
《等腰三角形的性质》教学反思 3
在本节课中,首先,从学生熟悉的亲身经历的现实生活入手,符合学生原有认知结构,营造使学生亲自体验新知识的氛围,创设有利于引向数学问题本质的真实情境,引导学生发现问题、提出问题,激发学生学习兴趣及探究的欲望,显示实际生活中等腰三角形的广泛应用,引出研究等腰三角形的重要性。
其次,通过对折、测量等活动,培养学生的合作意识、探究意识和动手能力。引导学生自主探究、发现、猜想、验证等腰三角形的性质,体验数学的学习活动过程,发展合理推理能力,符合学生认知规律。然后, 在学生经历“实验 --- 发现 --- 猜想 --- 验证”的基础上,引导学生讨论交流, 分别作出不同的辅助线,利用不同的'方法证明,猜想, 符合学生的原有知识结构,使学生逐步意识到,结论的正确性需要演绎推理的确认,把证明作为学生探索等腰三角形性质活动的自然延续和必要发展,发展演绎推理的能力,激发学生对数学证明的兴趣,提高学生思维的广阔性和灵活性。
最后,启发引导学生:要证明两个角相等,可以通过构造 两个全等三角形进行证明。在学生独立思考后, 引导学生讨论交流,分别作出不同的辅助线,用不同的 思路、方法 证明性质, 教师对学生及时进行鼓励评价,归纳示范,形成定理,并 揭示 等腰三角形 性质 定理的实质,体会转化思想 ,同时帮助引导学生总结证明两个角相等的方法,开阔学生思路。
《等腰三角形的性质》教学反思 4
本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现也是特殊的三角形一种。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点
首先,我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。在本章的.开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠B=∠C,那么,我们如何来证明呢?
为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度,通过引导,学生容易想到可添加辅助线构造全等三角形来加以证明。通过这样一个过程既培养了学生动口、动手、动脑的能力,也使本节课的难点得以突破,最后师生共同完成证明过程,定理得证。从而由感性认识上升到了理性认识。性质得出后再引导学生观察。既然△ABC≌△ACD,那么∠BAD、∠CAD,BD与CD、AD与BC有什么关系呢?让学生自己去发现、去联想,能充分地发挥学生主观能动性。通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。
《等腰三角形的性质》教学反思 5
本人在等腰三角形性质(第三课时)的教学中,教学方法是采用“目标--问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的'程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。目标--问题教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。
教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。
《等腰三角形的性质》教学反思 6
本节课的活动是从回顾轴对称图形的性质入手。因为等腰三角形是一种特殊的三角形,而等腰三角形是轴对称图形。为此,教材把本节内容安排在了轴对称之后。我利用旧知的复习唤起学生对等腰三角形的记忆。然后通过让学生预习,折纸、剪纸、猜想、验证等腰三角形的性质,并运用全等三角的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,使学生在生动有趣的数学活动中探究出等腰三角形的性质,从而实现教学目的。
在教学设计上,我把重点放在了学生交流展示和解疑点评上,由个别形象到一般抽象,体现出了学生从感性认识到理性知识发生发展的.认知过程。在教学过程中,我注重引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想;注重培养学生形成积极探索、主动学习的态度,关注学生学习兴趣和体验,充分体现数学教学主要是数学活动的教学;注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。
存在的问题:
1、本课主要放在学生知识的形成过程上,因此对等腰三角形性质的应用及知识的拓展方面较薄弱,显得深度不够。还需要在习题的设计上来补充体现。
2、课堂气氛虽热烈,学生对“三线合一”这一新名词很感兴趣,但还是难免一些同学只是凑热闹,并非真正学得真知的缺陷。要引导学生真正理解和体会几何语言的的魅力。
《等腰三角形的性质》教学反思 7
等腰三角形第一节课,要让学生通过动手翻折等腰三角形纸片得出等腰三角形"两个底角相等"、"三线合一"的性质。设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的。授课过程分为4个环节:
(1)感受生活中的等腰三角形。在学习等腰三角形之前,多数学生早已认识了等腰三角形。所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找"你身边的等腰三角形"。课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。学生们兴趣盎然地走进了《等腰三角形》的知识世界。
(2)形象认识等腰三角形性质特点。设计"已知等腰三角形的两边长分别为5和2,求周长",我的目的是检查学生对"三角形两边和大于第三边"知识的掌握情况及"等腰三角形有两条相等的边"的.理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:"等腰三角形两腰相等"。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。通过图形变异,学生认清了顶角是两腰的夹角而非上面的角,底角是腰与底边的夹角而非是下面的角。课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。
(3)通过折纸探究等腰三角形的性质。课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。可以看到同桌两个同学在小声的讨论。等腰三角形"等边对等角"、"三线合一"都是由其具有轴对称性质引出的,学生得出"两个底角相等"较为容易。因为担心"三线合一"学生会感到困难,我特意介绍了三角形中的角平分线、高和中线,并为学生设计出对应表格,让学生填出"三线合一"的性质。这样做好处是降低了"三线合一"性质得出的难度,学生较易了解,但由于设定表格,学生就被牵着鼻子走,限制了他们在实践过程的发现,学生的填表仅是印证了课本上的说明,如果让学生自主发挥,时间多费些,课堂上不确定因素也多了点,但学习效果应该会好一点。
(4)运用"等边对等角"解决实际问题。本节课的另一知识重点是学会应用"等边对等角"解决实际问题。课堂上,完成了一些角度计算的填空后,我侧重于让学生书写解题过程。新课标教材中对学生解题步骤书写要求比较放松,但我认为学生若养成严谨的书写习惯对于培养思维的严谨性有帮助,经过近一个学年的严格要求,多数学生能较顺利进行解题步骤的书写,但也还有部分学生对此感到困难。为进一步让学生巩固"等边对等角"性质的运用,我补充了"圣诞树轮廓为等腰三角形"这一道生活题,请同学们根据底角计算树顶两条斜线的夹角,本题与例题解法相同,同学们基本上都可以完成。课后反思,这个练习补充得不是很好。虽然可以让学生巩固书写格式,但在时间较紧的情况下,这样重复训练显然没有必要。
生命化教学实践中,提倡数学教学应更关注学生的认知特点,尽量让全体学生学有所获。本节课从总体上看,学生基本掌握了等腰三角形"等边对等角"及"三线合一"的性质,学会了"等边对等角"的运用,较好的完成了教学目的。但我总觉得,这样上课,学习基础较好的学生不能满足,会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体效果可能会好些。
这是我对《等腰三角形》课后的几点认识,希望同行给予指教,以期在生命化教学实践中能真正做到:师生创建平等、合谐的氛围,让学生的个性得到张扬,形成师生互动的学习环境,使我们的课堂走向精彩。
《等腰三角形的性质》教学反思 8
等腰三角形作为特殊三角形的典范,既是三角形、轴对称等知识的深化,又是证明角相等、线段相等、直线垂直的常用依据,也为三角形相似、三角形全等等后继知识的学习,奠定了坚实的基础。八年级的学生,从心理发展水平决定学习的思维特征由经验型推理向演绎推理过度,依赖于直观经验作出相应的判断和猜想,有了初步的推理验证意识。
根据《义务教育数学课程标准》内容,要求落实“四基”,课堂教学要体现教学的过程性、互动性和生成性,要充分关注学生的主体地位,凸显学生对知识的主动构建、对数学基本活动经验的积累和对数学思想方法的感悟。我在本节课的教学设计中,采用了问题激趣引发思考,将学生掌握的等腰三角形概念和三角形的高、中线等已有知识经验与新知进行桥接。针对学习主题,指导学生设计学习方案,逐步积累设计的活动经验。学生主动开展操作实验、观察猜想、推理论证的探究性学习,得到等腰三角形的性质,关注其动手实践、观察猜想的直接活动活动经验和推理论证、符号抽象的间接活动经验的积累。学生在我将用多媒体辅助教学呈现教学情境中,积极参与,对等腰三角形的性质证明,多角度的展开,活跃了思维,积累了一题多证的解题经验。
在进一步在变式训练中,学生通过应用性质的解释现象,解决问题,促使经验内化为思想,外化为解题的方法。课堂中学生充分展示学习收获,积极开展互评互议,体验成功的乐趣,学会客观的评价,初步感受到了数学学习的探究性和合作交流的必要性。
本节课的'设计和实施中需要改进的地方:①设计的练习,对学生准确运用性质符号有序推理考察反馈的显少。②变式练习在完成的过程中留给学生思考的时间较少,限制了学生解决问题的直接经验的积累和思想方法的感悟。③对于证明角度相等,未将“等边对等角”与全等证明进行比较辨析,促进学生将获得知识和积累经验内化到已知的认识体系。④对等腰三角形的性质的应用条件限制未进行判断辨析,易导致学生将“三线合一”性质泛化到腰上。
《等腰三角形的性质》教学反思 9
本节课主要是让学生了解等腰三角形的概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。在教学方面,主要按以下步骤进行教学,教学效果比较好。
一、教学建议
1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道:哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。
2、在学习等腰三角形的性质的时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。这样做培养了学生的'动手能力,团结合作的能力,以及探究的能力,动口的能力。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。
二、教学反思
1.充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
2.在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
【《等腰三角形的性质》教学反思】相关文章:
《等腰三角形的性质》教学反思12-05
比的性质教学反思01-15
比的性质教学反思01-15
等式的性质教学反思11-06
《小数的性质》教学反思01-14
等式的性质的教学反思03-07
《小数的性质》教学反思02-25
除法的性质教学反思01-02
小数的性质教学反思03-27
《矩形的性质》的教学反思04-19