篇一:分式方程教学反思
本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。
在教学设计上,以探究任务启发引导学生自学自悟的方式,提供了学生自主探究的舞台,营造了锻练思维的空间,在经历知识的发现过程中,培养了学生探究、归纳的能力。在课堂教学中,我时时注意营造思维氛围,让学生在探究中学会思考、表达。
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件, 方程式里必须有分式, 分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
在教学方法上,我采用类比渗透思想方法进行教学,通过与一元一次方程解法相比较,启发引导学生自主探究、归纳分式方程的解法。运用类比教学法具有以下三方面的优点:1.通过复习一元一次方程的解法,学生在探究、归纳分式方程解法的同时进行类比,让学生在解分式方程时有法可循,而不会觉得无从下手。2.把分式方程的解法与一元一次方程的解法进行相比较,让学生既可以温习旧知识,又可以加深对新知识的记忆。3.通过对一元一次方程和分式方程解法的类比,更能突显分式方程解法中验根的重要性。
篇二:分式方程教学反思
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学 应用 打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
我认为比较成功的
1、把思考留给学生,课堂教学试一试这个环节中,我把更多的思维空间留给学生。问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。
2、积极正确的引导,点拨。保证学生掌握正确知识,和清晰的解题思路。由于学生的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。
3、及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。
虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。
信心是成功的一半 , 在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。
篇三:分式方程教学反思
本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。
在教学设计上,以探究任务启发引导学生自学自悟的方式,提供了学生自主探究的舞台,营造了锻练思维的空间,在经历知识的发现过程中,培养了学生探究、归纳的能力。在课堂教学中,我时时注意营造思维氛围,让学生在探究中学会思考、表达。
在本课的教学过程中,我认为应从这样的几个方面入手:
1. 分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
在教学方法上,我采用类比渗透思想方法进行教学,通过与一元一次方程解法相比较,启发引导学生自主探究、归纳分式方程的解法。运用类比教学法具有以下三方面的优点:
1.通过复习一元一次方程的解法,学生在探究、归纳分式方程解法的同时进行类比,让学生在解分式方程时有法可循,而不会觉得无从下手。
2.把分式方程的解法与一元一次方程的解法进行相比较,让学生既可以温习旧知识,又可以加深对新知识的记忆。
3.通过对一元一次方程和分式方程解法的类比,更能突显分式方程解法中验根的重要性。
篇四:分式方程教学反思
一、要创造性地使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的`实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
二、相信学生并为学生提供充分展示自己的机会
学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。三、注意改进的地方
讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
篇五:分式方程教学反思
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
篇六:分式方程教学反思
一、设计思路:本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学 应用 打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。
二.教学知识点:在本课的教学过程中,我认为应从这样的几个方面入手:
1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。
2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。
3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
三、总体反思:首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。
其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。
最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。
总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。
篇七:分式方程教学反思
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。=
【八年级数学分式方程教学反思】相关文章:
八年级数学《分式方程》教学反思07-12
分式方程教学反思06-13
分式方程的教学反思06-06
分式方程教学反思06-06
分式方程教学反思06-14
《分式方程》教学反思01-28
《分式方程》教学反思03-09
八年级数学下册《分式方程》的教学反思06-29
八年级数学下册《分式方程》教学反思06-29