超级画板教学反思优秀

2021-06-11 教学反思

  曾经在我们学校已经听过刘海霞老师执教了《超级画板》,超级画板教学反思。课堂观摩会上,感受深刻。领略了刘老师智慧型老师的教学敏锐。看着学生学完这节课,掌握了探索规律解决问题的一般转化的方法“化繁为简,从简入手”,体悟到极限的数学思想。

  动态演示,探索规律;认识圆内接正多边形

  1、师:在圆周上找两个点,把圆周等分成2份,把这两个点连起来,是什么?生:直径;

  2、师:把圆周等分成3份,把点连接起来就成三角形;依次类推,

  等分成4份,得到正四边形;等分成5份,得到正五边形……

  3、引导观察,交流发现。师:圆内出现这些图形有什么共同的特点与变化?相同之处:每条边都相等,顶点在圆上,图形都在圆内,因此这些图形都叫做圆内接正多边形。有什么不同之处:点数越多,边数越多,面积和周长越接近圆;

  4、动画验证发现。师:为了验证大家的发现,演示一个动画。(动态演示:多边形随着边数增加而增大。

  5、数据验证发现。边演示动画,边出现数据,用数量精确刻画变化;当边数增多的时候,正多边形的面积和周长就接近圆了。当出现正100边形的时候,可以设问:看到的是正多边形,还是圆?肉眼看到的已经是一个圆,实际上是一个正100边形。引导想象:如果是正3072边形呢?学生惊呼:几乎就是圆了。

  6、数学史介绍。师:这个道理,在古代推导圆周率的时候,就被发现,这个伟大的数学家的名字叫刘徽。(注:学生总是异口同声地说“祖冲之”。)我们除了记住祖冲之还应该记住刘徽的“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”。学生根据理解加以解读。

  史料:中国古代从先秦时期开始,一直是取“周三径一”的数值来进行有关圆的计算。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。魏晋时期,刘徽提出用“割圆术”来求圆周率,把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算最精确的数据。以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。比西方国家早一千一百多年。刘徽所创立的'“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。

  反思:“实践与综合应用”作为小学数学课程的一个重要领域,是以学生为主体的解决问题的活动,与生活紧密的联系性、活动形式的多样性是它的特点,因此,实践性就是其核心价值,综合应用则是最终目的的体现。纵观这一节的听课活动,有很深的触动,发现了自己以前对“实践与综合应用”这一领域教学所持的观点还是比较狭隘的,经历并反思这个转变的过程,我感受着新的领悟——

  《超级画板》从实际生活中的小区平面示意图、户型结构图等引入,让学生直面现实,开始感受到“按比例缩小与放大”这个问题的价值,然后教师将各种材料丰富化,通过测量、计算,寻找规律,获得明确的认识,并进行实际的运用。整个课堂教学的流程,遵循从学生的需要出发,引发教师与学生“双主体”的互动,完成学生学习方法的习得,并在合作交流中进行拓展与提升。可能是教师的风格所致,也可能是学生年龄特征的原因,智慧闪光的力度不是特别明显。