勾股定理教学反思

2024-01-19 教学反思

  在我们平凡的日常里,我们的任务之一就是课堂教学,反思指回头、反过来思考的意思。那么优秀的反思是什么样的呢?以下是小编帮大家整理的勾股定理教学反思,欢迎阅读,希望大家能够喜欢。

  勾股定理教学反思 1

  《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

  一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

  二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边。

  三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

  四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

  五是缺少方程思想和转化思想,使综合类试题痛失分数。

  六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

  针对上述问题,痛定思痛,感悟颇多:

  第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生独立完成,并进行一定量的训练,才能实现教学的有效性。

  第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。

  第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的'实际问题,以便增强学生探究新知识、新方法的创造能力。

  第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:

  (1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。

  (2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。

  (3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。

  第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

  相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

  勾股定理教学反思 2

  本节课的设计目的是培养学生准确地将实际问题转化为数学问题,建立几何模型(即直角三角形),能正确远用勾股定理解释生活中问题,通过运用勾股定理对实际问题的解释和应用,进一步加强培养学生注意从身边的事物中抽象出几何模型(直角三角形)的能力,使学生更加深刻地认识到数学的本质:“数学来源于生活,同时又能服务于生活”,激起广大学生对数学对生活的热爱。

  这节课主要是围绕“课前预习?——设置问题——几何建模——解决问题——相应练习 ——拓展延伸”这一主线轴展开教学工作。其中主要体现在:

  首先,创设情境,激发兴趣。

  由教材中的实例引入,让学生猜一猜,梯的顶端下滑0.5米,问梯的`底端将滑动多少米?也是滑动0.5米吗?学生将会得出不同的反应,甚至争论;这时教师就恰到好处地引导学生建立几何模型(即直角三角形)再运用勾股定理解决问题,最终来验证彼此的猜想,这样一来,课堂气氛特别轻松,学生解决问题的兴趣也格外浓。

  其次,注重学生自主探究,合作交流。

  在探讨例1、例2时都是先让学生根据生活经验,猜一猜结论,然后再动手建摸、验证、质疑、讨论,充分体现了学生的主体地位,学生是发现者、探索者,教师是参入学习的启发者、协调者、激励者,体现出了教师的主导作用。

  第三,创设机会,让学生学会思考,乐于思考、善于思考。

  在教学中有意识地安排一些问题让学生多途径思考,发现答案多种多样,让他们体味出教学的精彩,享受做数学的成功喜悦。

  通过备课、上课后,虽然取得一定成功,但感到作为一位数学教师,要不断地及时学习新的知识,接受新信息;不断地及时充电、更新、常常使用诙谐幽默的语言;既要有领导者组织指导、调控能力,又要有被学生欣赏佩服的魅力;要让学生课堂上配合你、信任你、喜欢你,只要达到了这一高度,我们才能轻松自如地驾御课堂,高效、高质、高量地完成教学预设目标。

  勾股定理教学反思 3

  这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:

  1、从生活出发的教学让学生感受到学习的快乐。

  在“勾股定理”这节课中,一开始引入情景:

  平平湖水清可鉴,荷花半尺出水面。

  忽来一阵狂风急,吹倒荷花水中偃。

  湖面之上不复见,入秋渔翁始发现。

  花离根二尺远,试问水深尺若干。

  知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。

  2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的.典型例题。

  3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。

  4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的.资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。

  勾股定理教学反思 4

  通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。

  已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。在上节课学习过程中,学生已经练习过。但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。因此,当让学生自己独立完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。

  同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。解答这个问题的方法其实就是验证勾股定理所用到的方法————面积法。在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。如果此时能对已经解答出来的同学大力表扬,并让学生引导学生来解答余下的问题,那么效果会更好。

  数学问题生活化,用数学知识解决生活中的实际问题,是课程改革后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己探索、尝试,并在失败中寻找成功的途径。本题教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。课前预设与课堂生成,这是课程改革以来出现的`最多问题之一。

  课堂教学任务要完成,而课堂又要还给学生,充分发挥学生的自主性,那么如何处理好这个问题呢?在本课最后的这个环节里,如果能引导学生归纳本课学生的方法,特别是面积法,然后再给一个简单的问题来巩固,那么效果肯定会比这样匆匆结束课堂要好。但是,这部分知识内容又什么时候来解决呢?不解决行不行呢?这是课后困扰我的问题。“课堂教学应基于自身班级学生的具体情况,不论是课前预设(备课)还是课堂教学过程,都应以使绝大部分学生能真正学习掌握好为基础。”经过本节课的教学后,我自己对有效的课堂产生了一个这样的认识。在以“知识为中心”还是以“学生学习为中心”的这个问题上,我想应以学生为中心,同时兼顾教学内容的完成,如果发生矛盾时,那么我想是不是仍应以学生为中心呢?这样教学任务完成不了怎么办呢?影响教学进度又怎么办呢?考试又怎么办呢?

  其实,归根到底是:考试了怎么办呢?课程改革已走到了第七个年头,考试始终是一根有形无形的指挥棒在影响着我们每堂课的教学,在影响着我们的教学观念与教学方法,甚至于影响我们的教学理想。其实我们都很清楚,这样匆匆的进行课堂教学,虽然表面上看是完成了教学内容,但实际上学生并没有掌握好,考试时真的出现时学生仍是无法解答,那么,这样的教学岂不是也是无效的吗?无效的教学是不是在浪费学生的精力与时间呢?这样是不是有点自欺欺人了呢?想到这,我越感不安了。

  因此,如果有机会再上这节课,就算前面能提高一点效率,节省一点时间,我也会省去后面的那部分内容,增加一些有趣味的生活问题,总结与反思本课的方法,从而使学生对本课学习掌握得更好,对自身的数学学习更有自信。

  勾股定理教学反思 5

  义务教育课程标准实验教材八年级数学(下)《勾股定理》的第一课时,教材的重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。

  在讲课时,由于没有认真准备,也没有让学生准备学具,所以在上课时,只是让学生利用书中的图形来进行探究。对于勾股定理的证明,只是用了四个全等的直角三角形拼了拼,运用同一图形的不同表示法得出了结论。一节课,将课堂重点放到了对勾股定理结论的记忆和运用上,淡化了教材对勾股定理的探索和证明过程,结果只有班内少数同学学到了探索和证明方法,教学效果不佳。

  这节课讲过没多久,由于要参加优质课比赛,我又认真对这节课进行了准备。针对教材的任务要求,我对本节课的教学过程是这样设计的:

  1、欣赏图片,激发兴趣

  通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

  接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2、分析探究,得出猜想

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  3、拼图证明,得出定理

  先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。

  由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

  4、反思归纳,总结升华

  一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

  5、练习巩固

  主要练习勾股定理的其它证明方法。

  6、作业设计

  请你利用网络资源,收集有关勾股定理的'证明方法来进行学习。写出有关勾股定理知识的小论文,以便用来参加全市“小小科学家”创新大赛。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。

  在优质课上,对教材中的探究内容,不但制作了多媒体课件,还让每个学生都准备了探究图形和拼图纸板。在课堂上,学生通过自己尝试探究、小组交流合作、集中成果展示等多种形式参与课堂活动,虽然已是讲过的知识,但在试讲(本班学生)和比赛中(借外校学生上课),由于这次是让学生来探究获取知识,学生普遍参与,学习兴趣深厚,参与活动的积极性很高,小组分工合作任务明确,课堂效果很好。学生在掌握了知识的同时,由于真正经历了探究的整个过程,对科学家敏锐的观察力和勤于思考的作风理解颇深,并学到了一些新的探究方法,在思想上也受到了教育和启迪。课堂教学目标顺利完成,整个课堂丝毫没有那种“熟课”学生不想上的痕迹。

  通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:

  (1)新课改理念只有全面渗透到教育教学工作中,与平时工作紧密结合,才能够促进学生的全面发展;

  (2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;

  (3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。

  勾股定理教学反思 6

  勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的和谐统一的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手:

  一、注重知识的自然生发。

  传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是组织学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的过程中不断发展。

  二、注重数学课上的操作性学习

  操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。

  三、注重问题设计的开放性

  课堂教学是教师组织、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑提问来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸上任意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。

  四、注重让学生经历完整的数学知识的发现过程。

  新《数学课程标准》在关于课程目标的'阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。

  如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。

  勾股定理教学反思 7

  首先,激发了学生学习数学的兴趣。

  一直以来,数学作为一门主要学科,在各阶段考试中都占有重要的地位,而且数学也是自然科学的基础学科,因此学生学习的好与坏,即直接影响的最终成绩,也对其他理科的学习有一定的影响。目前,人们获得数学知识的场所主要在数学课堂,而在中学大多数课堂教学的模式是“教师讲、学生听”的传统教学,教师处于主动地位,学生被动接收知识。教师上课前认真备课,想方设法让学生把问题想清楚。学生课堂上可以走神,对教师讲的问题可认真想,也可不去想,反正最后老师要给出答案的。于是出现了这样一种情况:数学家在“做”数学,数学教师在“讲”数学,而学生在“听”数学。然而数学光靠听,当然学生也就渐渐失去了学习数学的兴趣。都说兴趣是最好的老师,可是传统的数学教学本身就具有抽象性,光靠讲,很难不去乏味。在多媒体的教学环境下,教学信息的呈现方式是立体、丰富且生动有趣的,学生对于如此众多的信息呈现形式,表现出的是强烈的兴趣,真正做到了全方位地调动学生的多种感官参与学习,使抽象的`内容变得更具体、易懂,更有利于激发学习兴趣,极大提高学生的参与度。多媒体可以产生一种新的图文并茂、丰富多彩的人机对话方式,而且可以立即对学习的内容掌握情况进行反馈。在这种交互式学习环境中,老师的作用和地位主要表现在培养学生掌握信息处理工具的方法和分析问题、解决问题的能力上。

  其次,运用多媒体可以优化教学设计,有利于呈现过程。

  传统的数学教学,仅借助一块黑板,一支粉笔、一本书、一张嘴,如此一节课下来,不仅教师累得够呛,学生也不轻松,易产生疲劳感甚至厌烦情绪,使得课堂教学信息传递结构效率较低。而通过多媒体教学,可以为教学提供强大的情景资源,能展示知识发生的过程,注重学生思维能力的培养,多媒体课件采用动态图像演示,具有较强的刺激作用,有助于理解概念的本质特征,促进学生在原有的认知基础上,形成新的认知结构。例如这次上课,我制作了几何画板动画,学生可以自己通过变化图形,得到直角三角形三边的关系,这要比直接上课举例证明更生动,印象更深刻,也更具有说服性。

  最后,多媒体教学也有助于提高教师的业务水平和计算机使用能力。

  教师要上好一节数学课,必须要认真的备课,需要查阅大量的资料,获取很多信息,去优化教学效果。庞大的书库也只有有限的资源,况且还要找,要去翻。而网络为教师提供了无穷无尽的教学资源,为广大教师开展教学活动开辟了一条捷径,大大节省了教师的备课时间。我们可以在网上下载到很多有助于自己教学的资料,包括教学课件和试卷等。通过网络,我们还可以学习到先进的教学思想、教学理念、教学方法。经常将多媒体信息技术运用到课堂教学的教师,他的教学方法应该总能走到前列。而且在教学中使用多媒体,要求教师有相当的计算机使用能力,也是对我们现代年轻教师个人文化素质提高的锻炼。

  当然,网络在上课时,也有一些不方便之处需要去解决。例如数学讲究叙理过程的书写。但是学生的打字输入技能还不能满足,因此网络课的习题都是以填空或者选择为主,书写的锻炼还是要靠纸币去完成。可是,事在人为,任何事情都是可以解决的。我想在科技发展迅速的今天,很快就有新技术去解决这些问题。作为年轻教师,我们要敢于挑战和尝试,在教学中学习,不断提高自身的业务水平。

  勾股定理教学反思 8

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位。

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法。但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生。

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识。从而教给学生探求知识的方法,教会学生获取知识的本领。并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积。

  本节课根据学生的认知结构采用“观察——猜想——归纳——验证——应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的`目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神。练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面。给学生自由的空间,鼓励学生多说。这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野。

  勾股定理教学反思 9

  新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。

  为此我在教学设计中注重了以下几点:

  一、让学生主动想学

  上这节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上。同时培养学生的自学能力及归类总结能力。

  二、在课堂教学中,始终注重学生的自主探究

  首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。

  三、教会学生思维,培养学生多种能力

  课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的.能力……

  四、注重了数学应用意识的培养

  数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。

  整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。

  勾股定理教学反思 10

  勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:

  一、导入新课,设疑巧激趣。

  引入2002年在北京召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的注意力,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。

  二、引导量量、猜猜、证证,有条不紊,思路清晰。

  让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。

  三、注重学生的情感目标,实现加强爱国主义教育。

  本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的.民族自豪感,促使探索新知识的热情,整个课堂师生和谐,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。

  四、课堂上充分体现学生的主体地位,教师是组织者,引导者。

  例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的组织者、合作者。

  通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。

  ①感觉今天这堂课没有平时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动提问的人较少。

  ②讲学稿编设的内容较多,有点欲速则不达的感觉。

  勾股定理教学反思 11

  勾股定理的探索和证明蕴含丰富的数学思想和研究方法,是培养学生思维品质的载体。它对数学发展具有重要作用。勾股定理是一坛陈年佳酿,品之芬芳,余味无穷,以简洁优美的形式,丰富深刻的内涵刻画了自然界和谐统一关系,是数形结合的优美典范。

  教学中我以教师为主导,以学生为主体,以知识为载体,以培养能力为重点。为学生创设“做数学、玩数学”的教学情境,让学生从“学会”到“会学”,从“会学”到“乐学”。

  1、查资料

  我让学生课前查阅有关勾股定理资料,学生对勾股定理历史背景有初步了解,学生充满自信迎接新知识《勾股定理》学习的挑战。

  学生查得资料:世界许多科学家寻找“外星人”。1820年,德国数学家高斯提出,在西伯利亚森林伐出直角三角形空地,在空地种上麦子,以三角形三边为边种上三片正方形松树林,如果有外星人路过地球附近,看到这个巨大数学图形,便知道:这个星球上有智慧生命。我国数学家华罗庚提出:要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。

  2、讲故事

  毕达哥拉斯是古希腊数学家。相传2500年前,毕达哥拉斯在朋友家做客,发现朋友家用地砖铺成地面反映了直角三角形三边的数量关系。

  我讲毕达哥拉斯故事,提出问题。学生独立思考,提出猜想。我配合演示,使问题形象、具体。教学活动从“数小方格”开始,起点低、趣味性浓。学生在伟人故事中进行数学问题的讨论和探索。平淡无奇现象中隐藏深刻道理。

  3、提问题

  “问题是思维的起点”,一段生动有趣的动画,点燃学生求知欲,以景激情,以情激思,引领学生进入学习情境,学生带着问题进课堂。

  例如:一架长为10m的梯子AB斜靠在墙上,若梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑2m ,那么它的底端是否也滑动2m ?

  尽管学生讲的不完全正确,但培养了学生运用数学语言进行抽象、概括的能力,学生经历了应用勾股定理解决问题的思考过程,学生增长了知识,学生增长了智慧。

  例如:《九章算术》记载有趣问题:有一个水池,水面是边长为10尺的正方形,在水池的中央有一根新生芦苇,它高出水面1尺,若把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池深度和这根芦苇长度各是多少?

  我通过“著名问题”探究,让学生了解勾股定理的古老与神奇。问题本身具有极大挑战性,激发了学生强烈求知欲,激发了学生探究知识的愿望。学生讨论交流,发现用代数观点证明几何问题的思路。我配以演示,分散了难点,培养了学生发散思维、探究数学问题的能力。

  4、讲证法

  我抛砖引玉介绍赵爽弦图,赵爽用几何图形截、割、拼、补证明代数恒等关系,具有严密性,直观性,是中国古代以形证数、形数统一的典范。赵爽指出:四个全等直角三角形拼成一个中空的正方形,大正方形面积等于小正方形面积与4个三角形面积和。 “赵爽弦图”表现了我国古代人对数学的钻研精神和聪明才智,它是我国数学的骄傲。这个图案被选为2002年北京召开的国际数学家大会会徽。

  随后展示了美国总统证法。1876年4月1日,美国伽菲尔德在《新英格兰教育日志》发表勾股定理的证法。1881年,伽菲尔德就任美国总统,为了纪念他直观、简捷、易懂、明了的证明,这一证法被称为“总统”证法。

  我感觉学生是小小发明家。学生在建构知识的`同时,欣赏作品享受成功的喜悦。

  5、巧设计

  练习设计我立足巩固,着眼发展,兼顾差异,满足学生渴望发展要求。练习有基础训练,变式训练,中考试题,引出勾股树,学生惊叹奇妙的数学美。课内知识向课外知识延伸,打开了学生思路,给学生提供了广阔空间。数学教学变得生机勃勃,学生喜欢数学,热爱数学。

  我让学生讲解搜集资料,丰富了学生背景知识,体现了自主学习方式。我对学生进行爱国主义教育,激发了学生民族自豪感和奋发向上学习精神。我让学生欣赏丰富多彩的数学文化,展示五彩斑斓的文化背景,激发了学生的爱国热情。

  6、善总结

  课堂小结是对教学内容的回顾,是对数学思想、方法的总结。我强调重点内容,注重知识体系的形成,培养了学生反思习惯。

  我还想对同学们说:

  牛顿——从苹果落地最终确立了万有引力定律

  我们——从朝夕相处的三角板发现了勾股定理

  虽然两者尚不可同日而语

  但探索和发现——终有价值

  也许就在身边

  也许就在眼前

  还隐藏着无穷的“万有引力定律”和“勾股定理”……

  祝愿同学们——

  修得一个用数学思维思考世界的头脑

  练就一双用数学视角观察世界的眼睛

  开启新的探索——

  发现平凡中的不平凡之谜……

  勾股定理教学反思 12

  本节课的设计目的是培养学生准确地将实际问题转化为数学问题,建立几何模型(即直角三角形),能正确远用勾股定理解释生活中问题,通过运用勾股定理对实际问题的解释和应用,进一步加强培养学生注意从身边的事物中抽象出几何模型(直角三角形)的能力,使学生更加深刻地认识到数学的本质:“数学来源于生活,同时又能服务于生活”,激起广大学生对数学对生活的热爱。

  这节课主要是围绕“课前预习?—设置问题—几何建模—解决问题—相应练习 —拓展延伸”这一主线轴展开教学工作。其中主要体现在:

  首先,创设情境,激发兴趣。

  由教材中的实例引入,让学生猜一猜,梯的.顶端下滑0.5米,问梯的底端将滑动多少米?也是滑动0.5米吗?学生将会得出不同的反应,甚至争论;这时教师就恰到好处地引导学生建立几何模型(即直角三角形)再运用勾股定理解决问题,最终来验证彼此的猜想,这样一来,课堂气氛特别轻松,学生解决问题的兴趣也格外浓。

  其次,注重学生自主探究,合作交流。

  在探讨例1、例2时都是先让学生根据生活经验,猜一猜结论,然后再动手建摸、验证、质疑、讨论,充分体现了学生的主体地位,学生是发现者、探索者,教师是参入学习的启发者、协调者、激励者,体现出了教师的主导作用。

  第三,创设机会,让学生学会思考,乐于思考、善于思考。

  在教学中有意识地安排一些问题让学生多途径思考,发现答案多种多样,让他们体味出教学的精彩,享受做数学的成功喜悦。

  通过备课、上课后,虽然取得一定成功,但感到作为一位数学教师,要不断地及时学习新的知识,接受新信息;不断地及时充电、更新、常常使用诙谐幽默的语言;既要有领导者组织指导、调控能力,又要有被学生欣赏佩服的魅力;要让学生课堂上配合你、信任你、喜欢你,只要达到了这一高度,我们才能轻松自如地驾御课堂,高效、高质、高量地完成教学预设目标。

【勾股定理教学反思】相关文章:

勾股定理教学反思03-27

勾股定理教学反思10-10

勾股定理的教学反思(精选31篇)03-21

勾股定理教学反思(精选19篇)09-29

《勾股定理》教学反思范文通用04-27

勾股定理教学反思(精选20篇)05-29

《勾股定理》课后教学反思(精选12篇)04-03

《勾股定理逆定理》教学反思(精选16篇)03-20

《勾股定理》优秀教学反思(通用13篇)03-22

勾股定理的应用教学反思范文(通用10篇)10-09