作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,借助教案可以让教学工作更科学化。那么你有了解过教案吗?以下是小编帮大家整理的数学八年级上册教案,仅供参考,欢迎大家阅读。
数学八年级上册教案1
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的`能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 单元(章)主题第三章 直棱柱任课教师与班级 本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时 教学目标(含重点、难点)及 设置依据教学目标 1、了解多面体、直棱柱的有关概念. 2、会认直棱柱的侧棱、侧面、底面. 3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征. 教学重点与难点 教学重点:直棱柱的有关概念. 教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力. 教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型 教 学 过 程 内容与环节预设、简明设计意图二度备课(即时反思与纠正) 一、创设情景,引入新课 师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢? 析:学生很容易回答出更多的答案。 师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。 二、合作交流,探求新知 1.多面体、棱、顶点概念: 师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点? 析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点 2.合作交流 师:以学习小组为单位,拿出事先准备好的几何体。 学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描 述其特征。) 师:同学们再讨论一下,能否把自己的语言转化为数学语言。 学生活动:分小组讨论。 说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。 师:请大家找出与长方体,立方体类似的`物体或模型。 析:举出实例。(找出区别) 师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征: 有上、下两个底面,底面是平面图形中的多边形,而且彼此全等; 侧面都是长方形含正方形。 长方体和正方体都是直四棱柱。 3.反馈巩固 完成“做一做” 析:由第(3)小题可以得到: 直棱柱的相邻两条侧棱互相平行且相等。 4.学以至用 出示例题。(先请学生单独考虑,再作讲解) 析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯) 最后完成例题中的“想一想” 5.巩固练习(学生练习) 完成“课内练习” 三、小结回顾,反思提高 师:我们这节课的重点是什么?哪些地方比较难学呢? 合作交流后得到:重点直棱柱的有关概念。 直棱柱有以下特征: 有上、下两个底面,底面是平面图形中的多边形,而且彼此全等; 侧面都是长方形含正方形。 例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。 板书设计 作业布置或设计作业本及课时特训 一、学生起点分析 通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性. 二、教学任务分析 《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数. 本节课的教学目标是: ①通过拼图活动,让学生感受客观世界中无理数的存在; ②能判断三角形的某边长是否为无理数; ③学生亲自动手做拼图活动,培养学生的.动手能力和探索精神; ④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解; 三、教学过程设计 本节课设计了6个教学环节: 第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置. 第一环节:质疑 内容:【想一想】 ⑴一个整数的平方一定是整数吗? ⑵一个分数的平方一定是分数吗? 目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理. 效果:为后续环节的进行起了很好的铺垫的作用 第二环节:课题引入 内容:1.【算一算】 已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗? 2.【剪剪拼拼】 把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗? 目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”. 效果:巧设问题背景,顺利引入本节课题. 第三环节:获取新知 内容:【议一议】→【释一释】→【忆一忆】→【找一找】 【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗? 【释一释】:释1.满足 的 为什么不是整数? 释2.满足 的 为什么不是分数? 【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础 【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段 目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性. 第四环节:应用与巩固 内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】 【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段 【画一画2】:在右2的正方形网格中画出四个三角形 (右1) 2.三边长都是有理数 2.只有两边长是有理数 3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足 的 解: (右2) 仿:在数轴上表示满足 的 【赛一赛】:右3是由五个单位正方形组成的纸片,请你把 它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3) 目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识. 第五环节:课堂小结 内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会? 2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗? 目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:学生总结、相互补充,学会进行概括总结. 第六环节:布置作业 习题2.1 六、教学设计反思 (一)生活是数学的源泉,兴趣是学习的动力 大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作. (二)化抽象为具体 常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象. (三)强化知识间联系,注意纠错 既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基. 一、教学目标 1、理解分式的基本性质。 2、会用分式的基本性质将分式变形。 二、重点、难点 1、重点:理解分式的基本性质。 2、难点:灵活应用分式的基本性质将分式变形。 3、认知难点与突破方法 教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。 三、练习题的意图分析 1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。 2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的'取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。 教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。 3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。 “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。 四、课堂引入 1、请同学们考虑:与相等吗?与相等吗?为什么? 2、说出与之间变形的过程,与之间变形的过程,并说出变形依据? 3、提问分数的基本性质,让学生类比猜想出分式的基本性质。 五、例题讲解 p7例2.填空: [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。 p11例3.约分: [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。 p11例4.通分: [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。 《正方形》教学设计 教学内容分析: ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。 ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。 ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。 学生分析: ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。 ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。 教学目标: ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。 ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。 ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。 重点:掌握正方形的性质与判定,并进行简单的推理。 难点:探索正方形的判定,发展学生的推理能 教学方法:类比与探究 教具准备:可以活动的四边形模型。 一、教学分析 (一)教学内容分析 1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社) 2.本课教学内容的地位、作用,知识的前后联系 《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。 3.本课教学内容的特点,重点分析体现新课程理念的特点 本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。 (二)教学对象分析 1.学生所在地区、学校及班级的特色 我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。 2.学生的年龄特点和认知特点 班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。 教学过程: 一:复习巩固,建立联系。 【教师活动】 问题设置:①平行四边形、矩形,菱形各有哪些性质? ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。 【学生活动】 学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。 【教师活动】 评析学生的结果,给予表扬。 总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。 演示平行四边形变为矩形菱形的过程。 二:动手操作,探索发现。 活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形? 【学生活动】 学生拿出自备矩形纸片,动手操作,不难发现它是正方形。 设置问题:①什么是正方形? 观察发现,从活动中体会。 【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。 【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。 设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么? 【学生活动】 小组讨论,分组回答。 【教师活动】 总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。 设置问题③正方形有那些性质? 【学生活动】 小组讨论,举手抢答。 【教师活动】 表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角 活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴? 学生活动 折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。 教师活动 演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空? ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。 学生活动 小组充分交流,表达不同的意见。 教师活动 评析活动,总结发现: 一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形; 有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,; 有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形; 四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。 以上是正方形的判定方法。 正方形是一个多么完美的`平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子? 学生交流,感受正方形 三,应用体验,推理证明。 出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。 方法一解:∵四边形ABCD是正方形 ∴∠ABC=90°(正方形的四个角是直角) BC=AB=4cm(正方形的四条边相等) ∴=45°(等腰直角三角形的底角是45°) ∴利用勾股定理可知,AC===4cm ∵AO=AC(正方形的对角线互相平分) ∴AO=×4=2cm 方法二:证明△AOB是等腰直角三角形,即可得证。 学生活动 独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。 教师活动 总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。 出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的? 学生活动 小组交流,分析题意,整理思路,指名口答。 教师活动 说明思路,从已知出发或者从已有的判定加以选择。 四,归纳新知,梳理知识。 这一节课你有什么收获? 学生举手谈论自己的收获。 请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。 发表评论 教学目标: 情意目标:培养学生团结协作的精神,体验探究成功的乐趣。 能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。 认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。 教学重点、难点 重点:等腰梯形性质的探索; 难点:梯形中辅助线的添加。 教学课件:PowerPoint演示文稿 教学方法:启发法、 学习方法:讨论法、合作法、练习法 教学过程: (一)导入 1、出示图片,说出每辆汽车车窗形状(投影) 2、板书课题:5梯形 3、练习:下列图形中哪些图形是梯形?(投影) 结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。 5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影) 6、特殊梯形的分类:(投影) (二)等腰梯形性质的探究 【探究性质一】 思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影) 猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答) 如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C 想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么? 等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。 【操练】 (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影) (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影) 【探究性质二】 如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答) 如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影) 等腰梯形性质:等腰梯形的两条对角线相等。 【探究性质三】 问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答) 问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论) 等腰梯形性质:同以底上的两个内角相等,对角线相等 (三)质疑反思、小结 让学生回顾本课教学内容,并提出尚存问题; 学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。 一、创设情景,明确目标 投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中。 请说一说你已经学习了三角形的哪些知识? 二、自主学习,指向目标 1、自学教材第1至3页。 2、学习至此:请完成《学生用书》相应部分。 三、合作探究,达成目标 三角形的概念表示方法及分类 活动一:阅读教材第1至2页内容,并思考以下问题: (1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形) (2)三角形有几条边?有几个内角?有几个顶点?(3,3,3) (3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c) (4)三角形按边分可以分成几类?按角分呢? 展示点评:学生结合图形分别回答,师生共同点评。 小组讨论:三角形的概念,如何用符号表示及分类? 反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示。 针对训练:见《学生用书》相应部分。 三角形的三边关系 活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性。 展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段。 a、从xxBxx鯻xCxx b、从xxBxx鯻xAxx鯻xCxx 从B沿边BC到C的路线长为xxBCxx。 从B沿边BA到A,从A沿C到C的路线长为xxAB+ACxx。 经过测量可以说xxAB+ACxx>xxBCxx,可以说这两条路线的长是xx不相等xx的 小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系? 反思小结:三角形的任意两边之和大于第三边,任意两边之差小于第三边。 针对训练:见《学生用书》相应部分 三角形有关知识的运用 活动三:见教材P3例题 小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理? 展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论。 反思小结:当题目中的条件不明确时要分类讨论。所有的三角形必须要满足三边关系定理。 针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1、概念:三角形,内角,边,顶点 2、符号语言。 3、三边关系。 4、角形的分类。 五、达标检测,反思目标 1、现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B) A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒 2、已知等腰三角形的两边长分别为3和6,则它的周长为(C) A、9 B、12 C、15 D、12或15 3、已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为(B) A、2 cm B、3 cm C、4 cm D、5 cm 4、若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成xx3xx个三角形。若等腰三角形的'两边长分别为3和7,则它的周长为xx17xx;若等腰三角形的两边长分别是3和4,则它的周长为xx10或11xx。 5、如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为xx25xcmxx。 6、工人师傅用35 cm长的铁丝围成一个等腰三角形铁架。 (1)若腰长是底边长的3倍,那么各边的长分别是多少? (2)能围成有一边长为7 cm的等腰三角形吗?为什么? 《11。1。1三角形的边》同步练习题(含答案) 2、四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为() A、4 B、3 C、2 D、1 答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形。故选B。 3、已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为() A、3 cm B6 、cm C、9 cm D、3 cm或6 cm 答案A当3 cm是等腰三角形的腰长时,底边长=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长= =4。5(cm),此时能组成三角形。∴底边长为3 cm,故选A。 《11.1与三角形有关的线段》同步测试(含答案解析) 2、一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是xx。 3、一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为xxx。 4、已知a,b,c是三角形的三边长。 (1)化简:|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|; (2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值。 【教学目标】 知识与技能 会推导平方差公式,并且懂得运用平方差公式进行简单计算。 过程与方法 经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。 情感、态度与价值观 通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。 【教学重难点】 重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。 难点:平方差公式的应用。 关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。 【教学过程】 一、创设情境,故事引入 【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事 【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。 【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗? 【学生回答】多项式乘以多项式。 【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。 【问题牵引】计算: (1)(x+2)(x—2);(2)(1+3a)(1—3a); (3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。 做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。 【学生活动】分四人小组,合作学习,获得以下结果: (1)(x+2)(x—2)=x2—4; (2)(1+3a)(1—3a)=1—9a2; (3)(x+5y)(x—5y)=x2—25y2; (4)(y+3z)(y—3z)=y2—9z2。 【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。 【学生活动】讨论 【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的.结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢? 【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。 用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。 【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。 二、范例学习,应用所学 【教师讲述】 平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。 例1:运用平方差公式计算: (1)(2x+3)(2x—3); (2)(b+3a)(3a—b); (3)(—m+n)(—m—n)。 《乘法公式》同步练习 二、填空题 5、幂的乘方,底数______,指数______,用字母表示这个性质是______。 6、若32×83=2n,则n=______。 《乘法公式》同步测试题 25、利用正方形的面积公式和梯形的面积公式即可求解; 根据所得的两个式子相等即可得到。 此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。 26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律; 等式左边减数的底数与序号相同,由此得出第n个式子; 八年级数学上册第三章平移与旋转复习教案 一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。 1.平移 2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。 3.简单的平移作图 ①确定个图形平移后的位置的条件: ⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。 ②作平移后的图形的方法: ⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的; 二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。 1.旋转 2.旋转的性质 ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。 ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。 ⑶任意一对对应点与旋转中心的连线所 成的角都是旋转角,对应点到旋转中心的距离相等。 ⑷旋转前后的两个图形全等。 3.简单的旋转作图 ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。 ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。 ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。 三、分析组合图案的形成 ①确定组合图案中的基本图案 ②发现该图案各组成部分之间的内在联系 ③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合; ⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。 一.选择题: 1.下列图形中,是由(1)仅通过平移得到的是( ) 2.在以下现象中, ① 温度计中,液柱的上升或下降; ② 打气筒打气时,活塞的运动; ③ 钟摆的摆动; ④ 传送带上,瓶装饮料的移动 属于平移的是( ) (A)① ,② (B)①, ③ (C)②, ③ (D)② ,④ 3. 将长度为5cm 的线段向上平移10cm所得线段长度是( ) (A)10cm (B)5c m (C)0cm (D)无法确定 4. 如图可以看作正△OAB绕点O通过( )旋转 所得到的. A.3次 B.4次 C.5次 D.6次 5.下列运动是属于旋转的是( ) A.滾动过程中的篮球的滚动 B.钟表的钟摆的摆动 C.气球升空的运动 D.一个图形沿某直线 对折过程 6.ABC是直角三角形,如图(a),先将它以AB为对称轴作出它的轴对称图形,然后再平移 得 到的图形应该是( ); (a) A B C D 7.下列说法正确的是( ) A.平移不改变图形的形状和大小,而旋转则改 变图形的形状和大小 B.平移和旋转的共同点是改变图形的位置 C.图形可以向某方向平移一定距离,也可以向某方向旋转一定 距离 D.由平移得到的图形也一定可由旋转得到 8.将图形按顺时针方向旋转900后的 图形是( ) A B C D 9. 下列图形中只能用其中一部分平移可以得到的是 ( ). (A) (B) (C) (D) 10. 下列标志既是轴对称图形又是中心对称图形的是 ( ). (A) (B) (C) (D) 11. 如图1,四边形EFGH是由四边形ABCD平移得到的, 已知,AD=5,B=70,则下列说法中正确的是 ( ). (A)FG=5, G=70 (B)EH=5, F=70 (C)EF=5,F=70 (D) EF=5,E=70 12. 如图3,△OAB绕点O逆时针旋转90到△OCD的位置, 已知AOB=45,则AOD的度数为( ). (A)55(B)45(C)40(D)35 13. 同学们曾玩过万花筒,它是由三块等宽等长的玻璃 片围成的.如图是看到的万花筒的一个图案,如图3中 所有小三角形均是全等的等边三角形,其中的菱形 AEFG可以看成是把菱形ABCD以A为中心( ). (A)顺时针旋转60得到 (B)逆时针旋转60得到 (C)顺时针旋转120得到 (D)逆时针旋转120得到 14. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是( ). 15. 下列图形中,绕某个点旋转180能与自身重合的图形有 ( ). (1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆 . (A)2个 (B)3个 (C)4个 (D)5个 16. 如图4, △ABC沿直角边BC所在直线向右平移到 △DEF,则下列结论中,错误的是 ( ). (A)BE=EC (B)BC=EF (C)AC=DF(D)△ABC≌△DEF 二、填空题. 1.平移是由_________________________________________所决定。 2. 平移不改变图形的 和 ,只改变图形的 。 3.钟表的分针匀速旋转一周需要60分,它的旋转中心是_______,经过20分,分针旋转________度。 4.如图四边形ABCD是旋转对称图形,点__________是旋转中心,旋转了_________度后能与自身重合,则AD=____ ______,AO=__________,BO =_____________。 5.△ 是△ 平移后得到的三角形,则△ ≌△ ,理由是 6.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着c点 旋转 度可得到△BCD. 7. 如图,四边形AOBC,它绕 着O点 旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是_________,旋转角是_________经过旋转点 A转到__________,点C转到__________,点B转到__________线段OA与线段________ ,线段OB与线段_ _______,线段BC与线段________是对应线段。四边形OACB与四边形ODFE的形状、大小______________。 8.如图,图案绕中心旋转_______度(填最小度数) 次和原来图案互相重合. 9. 如图7,已知面积为1的正方形 的对角线相交于点 ,过点 任作 一条直线分别交 于 ,则阴影部分的面积是 . 10. 如图9,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋 转一定的角度后能与△CB 重合.若PB=3,则P = . 三、解答题 1.如图,经过平移,△ABC的顶点A移 到了点D,请作出平移后的三角形。 2.如图,把 绕B点逆时针方向旋转30后, 画出旋转后的三角形。 3.在下图中,将大写字母E绕点O按逆时针方向旋转 90后,再向左平移4个格,请作出最后得到的图案. 4.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG。 (1)观察猜想BE与DG之间的大小关系,并证明; (2)图中是否存在通过旋转能够互相重合的两个三角形?若存在, 请说出旋转过程,若不存在,请说明理由。 5.如图, ABC中, BAC= ,以BC为边向外作等边 BCD,把 ABD绕着点D按 顺时针方向向旋转 得到 ECD的位置。若AB=3,AC=2,求 BAD的度数和线段AD 的长度。(A、C、E在同一直线上) 6如图,四边形ABCD的BAD=C=90,AB=AD,AEBC于E, 旋转后能与 重合。 (1)旋转中心是哪一点? (2)旋转了多少度? (3)若AE =5㎝,求四边形AECF的面积。 7.如图,梯形ABCD的周长为30cm,AD∥BC ,现将DC平移到AE处,AD=5cm ,求 ABE有周长。 一、内容和内容解析 1、内容 正比例函数的概念。 2、内容解析 一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。 对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。 本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。 基于以上分析,确定本节课的教学重点:正比例函数的概念。 二、目标和目标解析 1、目标 (1)经历正比例函数概念的形成过程,理解正比例函数的概念; (2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。 2、目标解析 达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的.概念。 达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。 三、教学问题诊断分析 正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。 因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。 【学习目标】 1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。 2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。 【学习重点】 探索和掌握等腰三角形的性质及其应用。 【学习难点】 等腰三角形的性质的应用。 【学习 过程】 一、你知道吗? 等腰三角形的`有关概念 《等腰三角形应用》讲义 课前预习 1.SAS,SSS,ASA,AAS,HL 2.这条线段的两个端点的距离相等 3.这个角的两边的距离相等 4.这样的点有4个 ?知识点睛 1.线段垂直平分线上的点到这条线段的两个端点的距离相等 2.角平分线上的点到这个角的两边距离相等 3.顶角的平分线 底边上的中线 底边上的高 三线合一 《13.3等腰三角形》专项练习 1、填空题 2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。 一、教材分析教材的地位和作用: 本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。 二、学情分析 八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。 三、教学目标及重点、难点的确定 根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下: (一)教学目标: 1、知识技能 (1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴. (2)理解并掌握轴对称的概念,对称轴;了解对称点. (3)了解轴对称图形和轴对称的联系与区别. 2、过程与方法目标 经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力. 3、情感、态度与价值观 通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。 (二)教学重点:轴对称图形和轴对称的有关概念. (三)教学难点:轴对称图形与轴对称的联系、区别 .四、教法和学法设计 本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的: 【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的`知识水平得到恰当的发展和提高。 【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。 【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率 五、说程序设计: 新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。 (一)、观图激趣、设疑导入。 出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。 [设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣, (二)、实践探索、感悟特征. 《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。 为了进一步认识轴对称图形的特点又出示了一组练习 (练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴 [设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。 (练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。 (三)、动手操作、再度探索新知。 将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。 再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。 (四)、巩固练习、升华新知。 出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称, 在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。 (课件演示)轴对称图形及两个图形成轴对称区别与联系 (五)、综合练习、发展思维。 1、抢答;观察周围哪些事物的形状是轴对称图形。 2、判断: 生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。 (1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴? 0123456789ABCDEFGH 3、像这样写法的汉字哪些是轴对称图形? 口工用中由日直水清甲 (这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边) (六)归纳小结、布置作业 [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展! 六、设计说明 这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。 教学目标: 知识与技能目标: 1.掌握矩形的概念、性质和判别条件。 2.提高对矩形的性质和判别在实际生活中的应用能力。 过程与方法目标: 1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。 2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。 情感与态度目标: 1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。 2.通过对矩形的探索学习,体会它的'内在美和应用美。 教学重点: 矩形的性质和常用判别方法的理解和掌握。 教学难点: 矩形的性质和常用判别方法的综合应用。 教学方法: 分析启发法 教具准备: 像框,平行四边形框架教具,多媒体课件。 教学过程设计: 一、情境导入: 演示平行四边形活动框架,引入课题。 二、讲授新课: 1.归纳矩形的定义: 问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。) 结论:有一个内角是直角的平行四边形是矩形。 2.探究矩形的性质: (1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.) 结论:矩形的四个角都是直角。 (2)探索矩形对角线的性质: 让学生进行如下操作后,思考以下问题:(幻灯片展示) 在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状. ①随着∠α的变化,两条对角线的长度分别是怎样变化的? ②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢? ③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系? (学生操作,思考、交流、归纳。) 结论:矩形的两条对角线相等. (3)议一议:(展示问题,引导学生讨论解决) ①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由. ②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗? (4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”) 矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形. 例解:(性质的运用,渗透矩形对角线的“化归”功能) 如图,在矩形abcd中,两条对角线ac,bd相交于点o,ab=oa=4 厘米,求bd与ad的长。 (引导学生分析、解答) 探索矩形的判别条件:(由修理桌子引出) (5)想一想:(学生讨论、交流、共同学习) 对角线相等的平行四边形是怎样的四边形?为什么? 结论:对角线相等的平行四边形是矩形. (理由可由师生共同分析,然后用幻灯片展示完整过程.) (6)归纳矩形的判别方法:(引导学生归纳) 有一个内角是直角的平行四边形是矩形. 对角线相等的平行四边形是矩形. 三、课堂练习(出示p98随堂练习题,学生思考、解答。) 四、新课小结: 通过本节课的学习,你有什么收获? (师生共同从知识与思想方法两方面小结。) 五、作业设计:p99习题4.6第1、2、3题。 板书设计: 1.矩形 矩形的定义: 矩形的性质: 前面知识的小系统图示: 2.矩形的判别条件: 例1 课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。 学习目标 1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。 2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。 3、初步学会运用平方差公式进行计算。 学习重难点重点: 平方差公式的推导及应用。 难点是对公式中a,b的广泛含义的理解及正确运用。 自学过程设计教学过程设计 看一看 认真阅读教材,记住以下知识: 文字叙述平方差公式:_________________ 用字母表示:________________ 做一做: 1、完成下列练习: ①(m+n)(p+q) ②(a+b)(x-y) ③(2x+3y)(a-b) ④(a+2)(a-2) ⑤(3-x)(3+x) ⑥(2m+n)(2m-n) 想一想 你还有哪些地方不是很懂?请写出来。 _______________________________ _______________________________ ________________________________、 1、下列计算对不对?若不对,请在横线上写出正确结果、 (1)(x-3)(x+3)=x2-3( ),__________; (2)(2x-3)(2x+3)=2x2-9( ),_________; (3)(-x-3)(x-3)=x2-9( ),_________; (4)(2xy-1)(2xy+1)=2xy2-1( ),________、 2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2; (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、 3、计算:50×49=_________、 应用探究 1、几何解释平方差公式 展示:边长a的`大正方形中有一个边长为b的小正方形。 (1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。 (2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗? 2、用平方差公式计算 (1)103×93 (2)59、8×60、2 拓展提高 1、阅读题: 我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下: 原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1) =(24-1)(24+1)(28+1)(216+1)(232+1) =……=264-1 你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看! 2、仔细观察,探索规律: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 (x-1)(x4+x3+x2+x+1)=x5-1 …… (1)试求25+24+23+22+2+1的值; (2)写出22006+22005+22004+…+2+1的个位数、 堂堂清 一、选择题 1、下列各式中,能用平方差公式计算的是( ) (1)(a-2b)(-a+2b); (2)(a-2b)(-a-2b); (3)(a-2b)(a+2b); (4)(a-2b)(2a+b)、 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材p143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材p145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材p144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材p145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的.月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1、(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2、 (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1、数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 2、一组数据23、27、20、18、x、12,它的中位数是21,则x的值是。 3、数据92、96、98、100、x的众数是96,则其中位数和平均数分别是( ) a.97、96 b.96、96.4 c.96、97 d.98、97 4、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) a.24、25 b.23、24 c.25、25 d.23、25 5、随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度(℃) -8 -1 7 15 21 24 30 天数3 5 5 7 6 2 2 请你根据上述数据回答问题: (1)。该组数据的中位数是什么? (2)。若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.b;4.c; 5.(1)15. (2)约97天 教学目标 1.认识变量、常量. 2.学会用含一个变量的代数式表示另一个变量. 教学重点 1.认识变量、常量. 2.用式子表示变量间关系. 教学难点 用含有一个变量的式子表示另一个变量. 教学过程 Ⅰ.提出问题,创设情境 情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时. 1.请同学们根据题意填写下表: t/时 1 2 3 4 5 s/千米 2.在以上这个过程中,变化的量是________.变变化的量是__________. 3.试用含t的式子表示s. Ⅱ.导入新课 首先让学生思考上面的几个问题,可以互相讨论一下,然后回答. 从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量. 这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时. [活动一] 1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y? 2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度? 引导学生通过合理、正确的思维方法探索出变化规律. 结论: 1.早场电影票房收入:150×10=1500(元) 日场电影票房收入:205×10=20xx(元) 晚场电影票房收入:310×10=3100(元) 关系式:y=10x 2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm) 挂2kg重物时弹簧长度:2×0.5+10=11(cm) 挂3kg重物时弹簧长度:3×0.5+10=11.5(cm) 关系式:L=0.5m+10 通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的`量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量. [活动二] 1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r? 2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S? 结论: 1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S= r2r= 面积为10cm2的圆半径r= ≈1.78(cm) 面积为20cm2的圆半径r= ≈2.52(cm) 关系式:r= 2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm. 若长为1cm,则宽为5-1=4(cm) 据矩形面积公式:S=1×4=4(cm2) 若长为2cm,则宽为5-2=3(cm) 面积S=2×(5-2)=6(cm2) … … 若长为xcm,则宽为5-x(cm) 面积S=x?(5-x)=5x-x2(cm2) 从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式. Ⅲ.随堂练习 1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式. 2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量. 解:1.买1支铅笔价值1×0.2=0.2(元) 买2支铅笔价值2×0.2=0.4(元) …… 买x支铅笔价值x×0.2=0.2x(元) 所以y=0.2x 其中单价0.2元/支是常量,总价y元与支数x是变量. 2.根据三角形面积公式可知: 当高h为1cm时,面积S= ×5×1=2.5cm2 当高h为2cm时,面积S= ×5×2=5cm2 … … 当高为hcm,面积S= ×5×h=2.5hcm2 【数学八年级上册教案】相关文章: 八年级上册数学教案07-26 菱形人教版数学八年级上册教案09-18 八年级上册数学教案12-23 八年级数学上册教案07-20 八年级上册数学教案12-23 数学上册教案12-25 数学上册教案12-25 八年级上册数学教案人教版07-26 乘法公式人教版数学八年级上册教案09-18数学八年级上册教案2
数学八年级上册教案3
数学八年级上册教案4
数学八年级上册教案5
数学八年级上册教案6
数学八年级上册教案7
数学八年级上册教案8
数学八年级上册教案9
数学八年级上册教案10
数学八年级上册教案11
数学八年级上册教案12
数学八年级上册教案13
数学八年级上册教案14
数学八年级上册教案15