初中数学北师大教案

2022-12-19 教案

  作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么你有了解过教案吗?下面是小编帮大家整理的初中数学北师大教案,希望能够帮助到大家。

初中数学北师大教案1

  一、教材分析

  同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。

  二、教学目标

  知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。

  过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。

  情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。

  三、教学重难点

  教学重点:同底数幂乘法运算法则及其应用。

  教学难点:同底数幂乘法运算法则的探索及灵活运用。

  突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。

  四、教学过程设计

  本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。

  第一环节旧知链接

  活动内容:1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)

  2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。

  设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。

  第二环节情境引入

  活动内容:1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

  2、.计算下列各式:

  (1)102×103;

  (2)105×108;

  (3)10m×10n(m,n都是正整数).你发现了什么?

  3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)

  (学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )

  设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的问题,培养学生数学转化的思想及重视算理的习惯。

  第三环节新知探究,归纳法则

  活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?

  (1)将引例中的各算式改写成乘法的字母算式。

  (2)观察计算结果有什么规律?

  (3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)

  (4)验证你的猜想。

  (5)小结归纳法则。

  (小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)

  同底数幂相乘,底数不变,指数相加。

  am· an=am+n(m,n是正整数)

  设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。

  活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流

  am· an· ap = am+n+p

  法则应用注意事项:(1)等号左边是同底数幂相乘法。

  (2)等号两边的同底相同。

  (3)等号右边的指数等于左边的指数和。

  (4)公式中的底数a可以表示数、字母、单项式、多项式等整式。

  设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。

  第四环节活学活用

  活动内容一:

  例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2

  (3)-x3.x5(4)b2m.b2m+1

  (学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)

  设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。

  活动内容二:

  例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?

  (独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)

  设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。

  第五环节巩固练习

  活动内容:课本随堂练习

  1.计算:

  (1)52×57;(2)7×73×72;

  (3)-x2·x3;(4)(-c)3·(-c)m.

  2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?

  3.解决本节课一开始比邻星到地球的距离问题.

  (小组讨论、交流、展示。自主探究完成。)

  设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。

  第六环节课堂小结

  活动内容:这节课你学到了哪些知识及哪些数学思想?

  (鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)

  设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。

  第七环节布置作业

  习题7.1A组1.B组1、2、3

  设计意图:作业分层布置,因材施教,培养学生的自信心。

  四、教学设计反思:

  1.培养学生数学思想,让学生掌握方法

  在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。

  2.改进教学和评价方式,为学生提供自主探索的机会

  数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。

初中数学北师大教案2

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1、学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2、联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1、马路用什么几何图形代表?(直线)

  2、文中相关地点用什么代表?(直线上的点)

  3、学校大门起什么作用?(基准点、参照物)

  4、你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1、0代表什么?

  2、数的符号的实际意义是什么?

  3、—75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1、什么样的直线叫数轴?它具备什么条件。

  2、如何画数轴?

  3、根据上述实例的经验,“原点”起什么作用?

  4、你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1、判断下列图形是否是数轴。

  2、口答:数轴上各点表示的数。

  3、在数轴上描出下列各点:1.5,—2,—2.5,2,2.5,0,—1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1、什么是数轴?

  2、数轴的“三要素”各指什么?

  3、数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1、下列命题正确的是()

  A、数轴上的点都表示整数。

  B、数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C、数轴包括原点与正方向两个要素。

  D、数轴上的点只能表示正数和零。

  2、画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3、画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4、在数轴上点A表示—4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。

  五、板书

  1、数轴的定义。

  2、数轴的三要素(图)。

  3、数轴的画法。

  4、性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1、什么样的直线叫数轴?

  定义:规定了_________、________、_________的直线叫数轴。

  数轴的三要素:_________、_________、__________。

  2、画数轴的步骤是什么?

  3、“原点”起什么作用?__________

  4、你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1、画一条数轴

  2、在你画好的数轴上表示下列有理数:1.5,—2,—2.5,2,2.5,0,—1.5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度、

  练习:

  1、数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

  2、距离原点距离为5个单位的点表示的数是________。

  3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

  附:目标检测

  1、下列命题正确的是()

  A、数轴上的点都表示整数。

  B、数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C、数轴包括原点与正方向两个要素。

  D、数轴上的点只能表示正数和零。

  2、画数轴,在数轴上标出—5和+5之间的所有整数、列举到原点的距离小于3的所有整数。

  3、画数轴,观察数轴,在原点左边的点有_______个。

  4、在数轴上点A表示—4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。

初中数学北师大教案3

  学习目标:

  1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.

  2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.

  学习重点:

  1.从现实情境中探索直角三角形的边角关系.

  2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.

  学习难点:

  理解正切的意义,并用它来表示两边的比.

  学习方法:

  引导—探索法. 更多免费教案下载绿色圃中

  学习过程:

  一、生活中的数学问题:

  1、你能比较两个梯子哪个更陡吗?你有哪些办法?

  2、生活问题数学化:

  ⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?

  ⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?

  二、直角三角形的边与角的关系(如图,回答下列问题)

  ⑴Rt△AB1C1和Rt△AB2C2有什么关系?

  ⑵ 有什么关系?

  ⑶如果改变B2在梯子上的位置(如B3C3)呢?

  ⑷由此你得出什么结论?

  三、例题:

  例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?

  例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.

  四、随堂练习:

  1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?

  2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)

  3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.

  4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.

  5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号)

  五、课后练习:

  1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______.

  2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.

  3、在△ABC中,AB=AC=3,BC=4,则tanC=______.

  4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值.

  5、若三角形三边的比是25:24:7,求最小角的正切值.

  6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的边长和四边形AECD的周长.

  7、已知:如图,斜坡AB的倾斜角a,且tanα= ,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?

  8、探究:

  ⑴、a克糖水中有b克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.

  ⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.

  ⑶、如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延长BA、BC,使AE=CD=c, 直线CA、DE交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.

  §1.1从梯子的倾斜程度谈起(第二课时)

  学习目标:

  1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.

  2.能够运用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形中的边角关系,进行简单的计算.

  4.理解锐角三角函数的意义.

  学习重点:

  1.理解锐角三角函数正弦、余弦的意义,并能举例说明.

  2.能用sinA、cosA表示直角三角形两边的比.

  3.能根据直角三角形的边角关系,进行简单的计算.

  学习难点:

  用函数的观点理解正弦、余弦和正切.

  学习方法:

  探索——交流法.

  学习过程:

  一、正弦、余弦及三角函数的定义

  想一想:如图

  (1)直角三角形AB1C1和直角三角形AB2C2有什么关系?

  (2)有什么关系?呢?

  (3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?

  (4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?

  请讨论后回答.

  二、由图讨论梯子的倾斜程度与sinA和cosA的关系:

  三、例题:

  例1、如图,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的长.

  例2、做一做:

  如图,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.

  四、随堂练习:

  1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.

  2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周长和面积.

  3、在△ABC中.∠C=90°,若tanA=

初中数学北师大教案4

  一、教学内容分析

  1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的.表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小、难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

  定义规定了原点、正方向、单位长度的直线叫数轴

  三要素原点正方向单位长度

  应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计、其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度、

  师:三个温度计所表示的温度是多少?

  生:2℃,—5℃,0℃、

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、8m处分别有一棵槐树和一根电线杆,试画图表示这一情境、(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)、

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零、具体方法如下

  (边说边画):

  1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示—1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?

  原点向左1.5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义、

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴、

  进而提问学生:在数轴上,已知一点P表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可、

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力、

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3)、画出数轴并表示下列有理数:

  1、1.5,—2.2,—2.5,,,0、

  2、写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念、

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究、

  十二、课后练习习题1.2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

初中数学北师大教案5

  一、教学目标

  【知识与技能】

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  【过程与方法】

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  【情感、态度与价值观】

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  【教学重点】

  数轴的三要素,用数轴上的点表示有理数。

  【教学难点】

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点A,B,C,D,E表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

【初中数学北师大教案】相关文章:

初中数学北师大教案08-26

初中数学北师大版教案08-27

北师大初中数学教案04-16

初中数学课件北师大03-31

北师大版数学教案06-16

北师大版小学数学教案07-14

北师大版小学数学下册教案11-05

北师大版小学数学下册教案11-05

北师大版初中数学函数说课稿04-07