九年级数学复习课教案

2022-09-30 教案

  作为一位杰出的老师,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?下面是小编为大家收集的九年级数学复习课教案模板,欢迎阅读,希望大家能够喜欢。

九年级数学复习课教案模板1

  教学内容

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0).

  教学目标

  理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.

  通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.

  教学重难点关键

  1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.

  2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0).

  教学过程

  一、复习引入

  (学生活动)口答

  1.什么叫二次根式?

  2.当a≥0时, 叫什么?当a<0时, 有意义吗?

  老师点评(略).

  二、探究新知

  议一议:(学生分组讨论,提问解答)

  (a≥0)是一个什么数呢?

  老师点评:根据学生讨论和上面的练习,我们可以得出

  (a≥0)是一个非负数.

  做一做:根据算术平方根的意义填空:

  ( )2=_______;( )2=_______;( )2=______;( )2=_______;

  ( )2=______;( )2=_______;( )2=_______.

  老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

  同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

  ( )2=a(a≥0)

  例1 计算

  1.( )2 2.(3 )2 3.( )2 4.( )2

  分析:我们可以直接利用( )2=a(a≥0)的结论解题.

  解:( )2 = ,(3 )2 =32?( )2=32?5=45,

  ( )2= ,( )2= .

  三、巩固练习

  计算下列各式的值:

  ( )2 ( )2 ( )2 ( )2 (4 )2

  四、应用拓展

  例2 计算

  1.( )2(x≥0) 2.( )2 3.( )2

  4.( )2

  分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

  (4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

  所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.

  解:(1)因为x≥0,所以x+1>0

  ( )2=x+1

  (2)∵a2≥0,∴( )2=a2

  (3)∵a2+2a+1=(a+1)2

  又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

  (4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

  又∵(2x-3)2≥0

  ∴4x2-12x+9≥0,∴( )2=4x2-12x+9

  例3在实数范围内分解下列因式:

  (1)x2-3 (2)x4-4 (3) 2x2-3

  分析:(略)

  五、归纳小结

  本节课应掌握:

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0);反之:a=( )2(a≥0).

  六、布置作业

  1.教材P8 复习巩固2.(1)、(2) P9 7.

  2.选用课时作业设计.

  3.课后作业:《同步训练》

九年级数学复习课教案模板2

  一、素质教育目标

  (一)知识教学点

  使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点

  逐步培养学生观察、比较、分析、概括等逻辑思维能力.

  (三)德育训练点

  培养学生良好的学习习惯.

  二、教学重点、难点

  1.重点:“正弦和余弦表”的查法.

  2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.

  三、教学步骤

  (一)明确目标

  1.复习提问

  1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.

  2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.

  (二)整体感知

  我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.

  (三)重点、难点的`学习与目标完成过程

  1.“正弦和余弦表”简介

  学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.

  (1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.

  2)表中角精确到1′,正弦、余弦值有四位有效数字.

  3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.

  2.举例说明

  例4 查表求37°24′的正弦值.

  学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.

  例5 查表求37°26′的正弦值.

  学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).

  解:sin37°24′=0.6074.

  角度增2′ 值增0.0005

  sin37°26′=0.6079.

  例6 查表求sin37°23′的值.

  如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.

  解:sin37°24′=0.6074

  角度减1′值减0.0002

  sin37°23′=0.6072.

  在查表中,还应引导学生查得:

  sin0°=0,sin90°=1.

  根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.

  可引导学生查得:

  cos0°=1,cos90°=0.

  根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.

  (四)总结与扩展

  1.请学生总结

  本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.

  2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.

  四、布置作业

  预习教材中例8、例9、例10,养成良好的学习习惯.

  五、板书设计

  14.1 正弦和余弦(四)

  一、正余弦值随角度变 二、例题 例5 例6

  化规律 例4

【九年级数学复习课教案】相关文章:

数学复习课教案01-17

  复习课教案10-04

数学复习课教学反思03-04

数学复习教案01-07

数学复习的教案07-17

数学复习教案01-07

音乐复习课教案11-03

阅读复习的课教案08-09

数学复习课教学反思范文07-04

小学数学复习课教学总结01-24