作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写呢?下面是小编精心整理的分数除法教案,欢迎阅读与收藏。
分数除法教案1
1、理解分数与除法的关系;会用分数来表示两数相除的商;会进行简单的问题解决;
2、引导学生参与探索分数与除法关系的全过程,注意结合分数的意义,进行分析。
理解分数与除法的转换,理解一个数是另一个数的N/N的关系
小组合作探究、操作法
例题放大图,学生自备彩色笔
一课时
一、复习与导入
1、回顾。
什么叫分数?举例说明。
分数单位是什么?举例说明。
3/4吨的分数单位是()吨,它包含有()个这样的单位。()个1/5米是4/5米;3/4千克是3个()千克。
2、导入
A、计算下列各题的商:
15÷3 24÷6 3÷21
B、口答出商;15÷3=5 ;24÷6=4;3÷21得不到整数的商,也除不尽;如果用循环小数表示循环节的数字也不简单,怎么办呢?引出课题。
二、探究与发现
(一)引进生活情境,激活旧知
1、少先队五年级大队准备在周末举办一联欢会。舞台前面的边长为4米,把它平均分成5份,便于摆花贫。每份的长度会是多少米?
这个问题交给我们班的同学帮助策划解决。还是以小组为单位,请各组同学把方法和相应的结果都考虑一下。
2、学生小组活动,师巡,了解并采集相关信息。
3、交流汇总。
4÷5=4/5(米)
(二)议一议,进一步发现规律
1、观察书上22页填表
让学生独立完成,说明发现了什么?
2、汇报交流
3、同桌互相交流关系
4、练习
(1) 3÷9=()/() 1÷6=()/()
(2)()÷()=4/7 3÷21=()/()
(三)两数间的商的又一种关系。
1、示例3的情境图(放大挂图)
学生观察这幅图给我们提供了哪些信息?
2只兔 ;4只鸡;3只鸭。
根据提供的信息,我们能不能从中找出它们之间的相互关系,当然我们今天主要是考虑商的关系。
学生可能会从量的多少去发现,师注意把重点转移到商的关系方向上来,现进行提取板书:
(1)兔的只数是鸭的几分之几? 2÷3=2/3
(2)鸡的只数是鸭的几分之几? 4÷3=4/3
还能再提问吗?
学生继续提问
2、分析与感悟
我们可以继续提出很多问题,但仅从以上的各个问题中,我们可以体会到什么?(把感觉集中到数量关系上来)
从生的从多交流中取得共识:求一个数的几分之几与求一个数是另一个数的几倍一样,都是用除法。
一个数÷另一个数(结果转化为分数形式N/N)
三、全课总结
这节课我们共同探讨了什么问题?有什么新收获?
概括关键词:关系------几分之几
四、作业
4、5、6、9
分数除法教案2
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
分数除法教案3
教学目标:
1、运用所学知识解决一些生活中的实际问题。
2、加强列方程的思维训练。
3、培养学生分析问题解决问题的能力。
教学过程:备注
活动一:复习与准备
1、爸爸的体重75千克,小明的体重是爸爸的7/15。
(1)、小明的体重是多少千克?
(2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?
(3)让学生说出数量关系并列式计算
活动二:出示例1
1、与复习题比较有什么不同?
2、要求小明的体重应该知道什么条件?为什么?
3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?
4、学生自己列式计算
5、与复习题比较有什么相同点和不同点?你发现了什么?
小结:(略)
1、要求学生自己做第二问
(1)、要求画图分析
(2)、与第一问比有什么不同?
(3)、根据什么等量关系列方程?
小结:
活动三:巩固练习
1、38页做一做
2、40页1、2
板书设计
分数除法教案4
教学内容:
教材第25~26页的内容及练习。
教学目标:
1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能运用分数除以整数的计算方法解决实际问题。
教学重难点:
1.探索并理解分数除法的意义。
2.探索并掌握分数除以整数的计算方法,能正确计算。
教学过程:
一、创设情景激趣揭题
1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。
2.引入并板书课题:分数除法(一)
二、扶放结合探究新知
1.提问:如果把这张纸的4/7平均分成2份,每份是多少?
2.把这张纸的4/7平均分成3份,又该怎样解决?
3.引导归纳分数除以整数的意义及计算方法。
4.想一想;整数除法也有类似的规律吗?
5.填一填,验证猜想。
1÷4 1×1/4
7÷3 7×1/3
三、反馈矫正落实双基
1.出示26页试一试。
2.指导完成26页练一练的1~3题。
四、小结评价布置预习
1.引导小结
(1)这节课我们学习了什么知识?
(2)还有什么问题?
2.布置预习:27~28分数除法(二)
板书设计:
分数除法(一)
4/7÷2=4/7×1/2=2/7
4/7÷3=4/7×1/3=4/21
分数除以整数的意义,与整数除法的意义相同。
计算法则:分数除以整数(零除外),等于乘这个整数的倒数
分数除法教案5
教学目标
(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。
教学重点、难点
重点、难点:理解分数与除法的关系。
教具、学具准备
教 学过程
备 注
一、复习铺垫
1、口述下列分数的意义:
1/44/57/9
2、口答列式计算。
(1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?
120÷12=10(人)
(2)把12米长的钢管平均截成6段,每段长多少米?
12÷6=2(米)
归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。
如果把(2)题的12米改成1米,如何列式?
1÷6
它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。
出示课题“分数与除法的关系”。
二、教学新知
1、教学例2。
把1米长的钢管,平均截成6段,每段长多少米?
(1)边作图边讲解。
“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以
1÷6=1/6(米)
(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)
2、教学例3。
把3只月饼平均分成4份,每份是多少?
教学过程
备 注
(1)读题后指名学生列式:
3÷4
(2)边讲解边出示图式
(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。
第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。
得出3÷4=3/4(只)
:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。
3、归纳分数与除法的关系。
(1)观察例2、例3的算式。
1÷6=1/6(米)
3÷4=3/4(只)
(2)思考分数与除法有什么关系?
(3)结论:
被除数÷除数=被除数/除数
(4)练一练:
课本P75第1题。
把分数改写成除法算式。
4/7=()÷()21/25=()÷()
14/27=()÷()7÷()=7/()
讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?
结论:在除法中,除数不能为零。
在分数中,分母不能为零。
三、练习反馈
1、7分米是几分之几米?
23分钟是几分之几小时?
学生独立练习后集中反馈,说一说思考过程。
:“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。
把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。
2、练一练:
课本P76第5题填在书上。
四、课堂练习
课本P76第2、3、4题。
五、课后作业《作业本》
学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。
分数除法教案6
单元目标:
1.理解并掌握分数除法的计算方法,会进行分数除法计算。
2.会解答已知一个数的几分之几是多少求这个数的实际问题。
3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4.能运用比的知识解决有关的实际问题。
单元重点:
理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题
单元难点:
理解分数除法的算理,列方程解答分数除法问题
第一课时:分数除法的意义和分数除以整数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= =,每份就是2个。
B、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
第二课时:一个数除以分数
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
第三课时:练习课
第四课时:分数混合运算
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)
3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?
二、新知探究
1、教师课件出示例4
2、课件出示自学提纲:
(1)例4中的哪些条件和复习中的3相同?问题相同吗?
(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……
(3)尝试说说自己的解题思路并解答。
3、学生根据提纲尝试解题。
4、全班汇报
(1)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(2)说说运算顺序,再进行计算。
(1)计算1/5÷(2/3+1/5)×15
让个别学生说出运算顺序并计算题目的得数。
教师巡回指点,搜集存在问题。
教师黑板出示问题,学生上台改正,并说明理由。
(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。
三、当堂测评
练习九第1、2、3题:
注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6
楼楼板到地面的高度实际上只有5层楼的高度。
学生独立完成教师点评,解决疑难。
学生相互得分,评选优胜小组。
四、课堂小结
这节课有什么收获?说一说。
还有什么不懂的?提出来小组内解决。
设计意图
1、在课初始,我便从复习整数及小数的运算顺序入手,
重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发
现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练
习加强计算的训练。
2、当堂测评题将学生置于提高之处,联系实际生活解决问
题,让学生体会到数学知识的广泛性和严谨性
教学后记
第五课时:练习课
已知一个数的几分之几是多少求这个数的应用题
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:
分数除法应用题的特点及解题思路和解题方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、根据题意列出关系式。
(1)一个数的3/4等于12.
(2)男生人数的11/12等于220人。
(3)甲数的5/8是40.
(4)乙数的4/5刚好是1/6.
2、解决问题
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?
(1)看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× =体内水分的重量
(2)指名口头列式计算。
二、新知探究
(一)教学例1.
1、课件出示自学提纲:
(1)这一例题和复习中的题有什么不同和相同呢?想一想。
(2)有几个问题?都和哪些条件有关?
(3)读题、理解题意,并画出线段图来表示题意
(4)独立解决第一个问题。
2、全班汇报
(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。
小明的体重× =体内水分的重量
(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。
(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)
(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)
3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找关键句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸的体重× =小明的体重
①方程解:解:设爸爸的体重是χ千克。
χ= 35
χ=35÷
χ=75
②算术解:35÷ =75(千克)
4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、当堂测评(课件出示)
1、根据题意列出算式,不必计算(每题15分)。
(1)一个数的2/5是40,这个数是多少?
(2)一个数的3/8是24,这个数是多少?
(3)甲数是100,占乙数的4/5,乙数是多少?
(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?
2、解决问题(40分)。
某校有女生160人,正好占男生的8/9,男生有多少人?
学生独立完成,教师巡回指点,注重学困生的提高。
小组内订正、互评,做到兵强兵。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。
设计意图:
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。
教学后记:
分数除法教案7
教学准备
教学时数2课时
教学过程
一,你学到了什么?与同学进行交流。
1,第一单元的内容。
学生先小组交流,然后师生共同讨论知识的过程。
分数乘法的意义,分数乘法的计算方法,解决简单的分数乘法应用题。
2,第二单元的内容。
长方体,正方体的特点,长方体,正方体的展开图,长方体,正方体的表面积的计算方法。
3,第三单元的内容。
除法的意义,除法的计算方法,倒数的含义,用方程解决问题,算术方法解决除法问题。
二,决问题
1.第1题,学生独立完成,教师集体对答案,表扬做全对的同学。
2.第2题,学生独立完成,让学生说说是怎样想的?
3.第3题,学生先独立完成,要向学生讲清怎样才知道10包纸巾的长、宽、高。师生共同讨论。
4.第4题,引导学生从不同的角度思考解决问题的方法,也可引导学生通过画图来理解题意。
5.第5题,首先鼓励学生看懂图意,然后分析图中的数量关系,列出方程解决问题:2/9Ⅹ=140。
6.第6题。鼓励学生理解题意,然后分析题目中的数量关系,在此基础上独立解决问题。
7,第7题。学生独立完成,教师集体讲评。
8.第8题。小组交流,然后师生共同完成。
9.第9题。以统计表的形式出现复习分数乘法,但是很容易解决。先让学生独立解决,然后说一说题意的策略。
三.
通过这两单元的与复习,你学到了什么?
分数除法教案8
教学目标:
1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位1的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?
(1)吃了 是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。 解:设买来大米X千克。
x- x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。 解:设航模小组有人。
+ =25
(1+ )=25
=25
=20
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数除法教案9
第课时分数与除法
1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。
2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。
3、能运用分数与除法的关系解决相关的问题。
4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。
【重点】理解和掌握分数与除法的关系。
【难点】理解用分数可以表示两个数相除的商。
【教师准备】 PPT课件,口算卡片。
【学生准备】 3个完全相同的圆片,剪刀。
填一填。
(1)表示的意义是()。
(2)的分数单位是(),它有()个这样的分数单位。
【参考答案】
(1)4个是多少
(2)7
老师出示口算卡片,学生口答。
8÷4= 15÷5= 12÷3=
5÷4= 6÷5= 7÷3=
师:比较这6道题的商,你发现了什么
预设生:上面3题的商没有余数,下面3题的商都有余数。
师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)
由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。
师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。
预设生:可以用小数表示商,或者除到个位后,用余数表示结果。
师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)
通过老师提问,引起学生思考,激发学习欲望。
一、教学例1,掌握用分数表示除法的商的方法。
1、PPT出示例1。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:1÷3。
(3)用PPT出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。
预设生:每人分得个。
老师根据学生回答板书:1÷3=(个)。
2、巩固练习。
用分数表示下面各题的商。
3÷7= 5÷8= 9÷10=
21÷32= 4÷11= 6÷13=
【参考答案】
使学生了解用分数表示商的方法。
二、教学例2,使学生理解分数与除法的关系。
1、PPT出示例2。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:3÷4。
(3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。
(4)用PPT出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。
预设生:每人分得个。
老师根据学生的回答进行板书:3÷4=(个)。
2、老师引导学生观察除法算式与分数,探究它们之间的关系。
(1)用文字进行表述例1和例2的算式。
1÷3=
3÷4=
被除数÷除数的结果怎样表示得到:
被除数÷除数=
(2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。
预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。
(3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。
预设生:a÷b=。
(4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。
老师根据学生的回答进行板书。
a÷b=(b≠0)
被除
除数
数
(5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。
通过小组讨论,使学生明确分数与除法的关系。
三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。
1、PPT出示例3。
(1)学生读题,理解题意。
(2)出示自学要求:
①想一想,答案是多少
②有什么办法说明自己的答案是正确的怎样说明
③题中的两个问题有什么关系
学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。
(3)组织学生汇报自学情况,展示答案。
自学要求①:
预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。
自学要求②:
预设生:可以通过画图分析,证明自己的答案是正确的。
(根据学生回答,展示学生画的图或用PPT出示教材第50页的图)
自学要求③:
预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。
2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)
3、师:根据题意,你们还能提出其他的数学问题并解答吗
(1)学生在小组里讨论,提出问题并解答。
(2)各小组展示提出的问题和解答的过程。
预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。
生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。
……
4、巩固练习。
五、(1)班有男生23人,女生22人。
(1)女生人数是男生人数的几分之几
(2)女生人数是全班人数的几分之几
(3)男生人数是全班人数的几分之几
学生独立解答,指名回答,集体订正。
分数除法教案10
教学过程:
一、复习旧知识,引进新课
1、把8个饼平均分给4个人,每人分得几个?谁能列式?
2、把4个饼平均分给4个人,每人分得几个?
这两道题,是我们以前学过的,把一个数平均分成几份,求每一份是多少,
什么方法来计算?
二、激思讨论,探讨新知识
1、教学例1。
(1)把1个饼平均分给3个人,每人分得几个?怎样列式?
(2)求每人分得几个?用除法来列式。那每人到底分得多少个饼呢?你是怎么想的?(课件演示:一张饼的1/3就是1/3张饼。)
2、揭示课题:这节课我们就来研究“分数与除法”。让学生提出学习这一节课想知道的问题。
【设计意图:运用学生对已有知识“分数的意义”和“除法的意义”的理解,沟通分数与除法的关系,让学生明确在计算除法的时候,往往得不到整数的结果,可以用分数来表示。】
三、实际操作,寻找规律
教学例2。
1、把3张饼平均分给4人该怎么计算呢? “3 ÷ 4”表示什么意思?现在每
人能分得一张饼吗?
2、指导学法,让学生动手操作:利用3个圆形纸片,动手折一折、剪一剪、
分一分,看看平均每人能分到多少块?
3、各组汇报分法及分的结果。
组1:我们是把这3张饼,每个都平均分成4块,一共分成12块,每人得3块。
组2:一个饼一个饼地分。先将第一个饼平均分成4份,每人分得其中的一份;
将第二个饼也平均分成4份,每人也分得其中的一份;将第三个饼同样平均分成4份,每人又分得其中的一份。将每个人得到的饼拼在一起,也是3/4张饼。
组3:三个饼叠在一起,平均分成4份,每人分得其中的一份。每人分得3张饼的1/4,也是3/4张饼。
4、电脑屏幕显示三种分法,让学生尝试说出推理过程。
(1)把3个饼平均分成4份,我们可以吧什么看作单位“1”?
一份是多少个饼?一份是三个饼的几分之几?
(2)从屏幕显示和操作,我们可以看出:1个饼的3/4就是3个饼的1/4。
(3)3/4就是哪一算式计算的结果?
(4)3/4个饼表示什么意义?
【设计意图:通过分析“把3张饼平均分成4份”,完成了从观察到想象,从个别到其他的思维过渡,同时为充分发现分数和除法的关系创造了条件。】
四、比较分析,分析规律
1、观察等式1÷4=1/4,3÷4=3/4,,3÷5=3/5发现除法和分数有怎样的关系?
2、你发现分数与除法有什么联系?为什么用相当于?
【设计意图:这个环节重点要引导学生发现:分数恰好是相应除法算式的结果,发现除法算式各部份与分数各部份的关系,并指导学生用准确的语言进行表述,比如“被除数相当于分数的分子”中的“相当于”而不是“就是”,便于学生认识到分数与除法既相联系又相区别。】
板书:被除数÷除数=被除数/除数这个等式还有注意什么?在分数中分母能是零吗?为什么?
3、如果用字母a、b分别表示被除数、除数这个等式该怎样写?这里哪个字母不能是零?
4、联系复习时3÷5=3/5,现在你能运用分数和除法的关系来说明吗?
5、小结:一个分数不仅可以表示一个得数,也可以看作一个除法算式。
五、多层练评,反馈总结
1、75页自主练习1,生独立完成。
7÷12=( )/( ) 4÷3=( )/( )
9/5=( )÷( ) 3/8=( )÷( )
2、单位之间的互化。
7分米=( )/( )米 3克=( )/( )千克
23分=( )/( )时 59秒=( )/( )分
3、解决生活中的问题。
4、课堂总结:通过这节课学习你有什么收获?
分数除法教案11
教学目标:
1.知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。
2.过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。
3.情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的.过程。
教学重点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学难点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学准备:
小黑板
教学过程:
一、复习
1.口算
15 x=5 34 x=6 3x=910
5x=1011 12 x=89 23 x=67
2.口答下列各题的数量关系式。
⑴某数的35 是36。
⑵全厂人数的58 是210人。
⑶完成了300个,刚好是计划的14 。
⑷一个数的3倍是1225 。
3.解答:小营村全村有耕地75公顷,其中棉田占35 。 小营村的棉田有多少公顷?
生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?
二、探究新知
师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?
师:指名读题,谁能找出这道题的已知条件和所求问题。
师:题中"总数的49 "这个条件你是怎样理解的?
师:边画图边理解
师:请同学们看图说说题里的已知条件和问题。
师:观察图示,你发现数量间有怎样的相等关系。
师:你是根据什么列出等量关系的?(同桌讨论)
师:在这个等量关系中,哪个量是已知的?哪个量是未知的?
师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)
师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?
师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的 49 ,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。
师:回顾例题的学习过程,你认为解题关键是什么?
师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。
师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23 ,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)
指名板演,其他自练。
三、巩固练习
试一试
四、全课
师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。
五、作业
教学后记:
找准单位"1"的量,掌握题中的数量关系是解答分数问题的关键,教学例题时。我先让学生找单位,写出数量关系,让他们根据数量关系列方程,掌握还不错。
分数除法教案12
设计说明
《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:
1.注重对算理的探究。
探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。
2.突出自主探究的过程。
《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。
课前准备
教师准备 PPT课件
学生准备 圆形纸片
教学过程
第1课时 分数除法(二)(1)
⊙创设情境,导入新课
有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?
设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。
⊙合作交流,探究新知
1.初步探究计算方法。
(1)课件出示教材57页上面例题。
(2)组织学生独立完成前两个小题,明确数量关系。
学生独立完成后汇报:
每2张一份,可分成几份?4÷2=2(份)
每1张一份,可分成几份?4÷1=4(份)
(3)组织学生讨论后,明确一个数除以分数的计算方法。
①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。
生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。
生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。
②观察算式,明确计算方法。
组织学生观察下面两个算式,交流自己的发现。
4÷=4×2=8 4÷=4×3=12
小结:一个数除以一个不为零的数,等于乘这个数的倒数。
设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。
2.进一步巩固计算方法。
(1)出示教材57页中间例题的表格。
(2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。
(3)组织学生填写表格。
(4)讨论:从表格“算式”一栏,你发现了什么?
(一个数除以一个不为零的数,等于乘这个数的倒数)
3.算一算,巩固计算方法。
(1)组织学生独立完成教材57页下面例题。
(2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)
⊙巩固练习,提升反馈
完成教材58页3题,集体订正。
⊙课堂总结
通过本节课的学习,你有哪些收获?
⊙布置作业
教材58页1、2题。
板书设计
分数除法(二)(1)
4÷=8 4÷=12
分数除法教案13
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数除法教案14
说课内容:
九年义务教育六年制小学数学人教版第十册第65页。
教学地位:
分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。
教学目标:
1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。
2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。
3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。
教材分析:
首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。
其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。
第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。
教学学法:
教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。
在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。
这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。
分数除法教案15
教学内容:
49~50页的内容及练习十二1~12题。
教学目标:
1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3.引入:5除以9,商是多少?板书:5÷9
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1.教学例1:出示题目
(1)列出算式。(板书:1÷3=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2.教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。
学生相互说说 表示的意义。
3.教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4.教学例3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1.做一做:独立完成,集体订正。
2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3.作业:练习十二7----11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
【分数除法教案】相关文章:
分数与除法教案08-26
分数与除法教案03-19
《分数与除法 》教案01-28
《分数与除法 》教案08-13
《分数与除法的关系》教案11-02
《分数与除法的关系》教案精选11-25
《分数除法练习》教案06-18
《分数除法练习》教案09-09
分数除法《工程问题》教案03-31
【精选】分数除法教案4篇12-30