作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写呢?下面是小编收集整理的五年级数学下册教案,欢迎阅读与收藏。
五年级数学下册教案1
一、复习导入
1.课件出示圆:关于圆这个图形,你已经了解了一些什么?
学生口答。
2.那么你还想学习关于圆的哪些知识呢?(课件显示什么是圆的面积)
二、教学例7
1.初步猜想:猜一猜圆的面积可能与什么有关?
2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。
(1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。
提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。)
出示方格图后指出:可以用数方格的方法再来验证刚才的猜想。
提问:想一想,我们怎样去数方格?学生交流时注意引导:①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。
在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。
(2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。
让学生观察例题中的下面两幅图,计算并填写图下的表格。
3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?
学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。
三、教学例8
1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。
2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。
提问:拼成的图形像个什么图形?
追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)
3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。
4.进一步想像:如果将圆平均分成64份、128份……也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。
5.推导公式。
(1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。
交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。
追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)
(2)根据长方形面积的计算方法,怎样来计算圆的面积?
根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr。
追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
6.做“练一练”。
核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。
四、教学例9
1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:
2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。
3.学生独立列式解答,并组织交流。
五、做练习十九的第1题
1.指名读题,并要求说说对题意的理解。
2.学生独立尝试解答。
3.反馈交流。对解答错误的学生帮助其分析错误的原因。
六、全课小结
今天这节课,你有什么收获? (重点引导关注:圆的面积公式是怎样的?我们是怎样推导出圆的面积公式的?解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?等等。
五年级数学下册教案2
教师出示人教版九年义务教育六年制第十册16页的例1:服装小组用21.45米布做了15件衬衫,平均每件用布多少米?
师:怎么列式?
生1:21.45÷15。
师:我们会计算2145÷15,那么21.45÷15怎么算出它的结果呢?先独立思考,试做一下,然后在小组内讨论吧!
教师巡视,参与小组讨论。
师:哪个小组派个代表来向全班同学汇报:
组1:我们组是把21.45米化成2145厘米,算式就改写成2145÷15,变成了整数除法,结果是143厘米,再把143厘米化成1.43米。
师:有道理!还有不同的做法吗?
组2:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商也应缩小100倍,正确的结果是1.43。
组3:我们小组是列竖式计算出来的。接着把做的竖式放在展示台上展示。
师:各小组都想出了办法,把21.45÷15的结果算出来了。现在老师要提一个问题:哪个小组想的办法更好?今后都能使用。小组继续讨论。
组4:组3想的办法更好,没有局限性,碰到类似的算式都可以用这样的竖式计算。
师:大家同意吗?
(学生齐答:同意。)
师:好,那么大家一起来观察这个竖式。哪位同学要提出什么问题?
生2:商的小数点是怎么来的?
生3:商的小数点是和被除数的小数点对齐。
生2:商的小数点为什么要和被除数的小数点对齐?
师:谁能解决这个问题?
生4:因为商的最高位在个位上,而小数点应该在个位的后面,所以小数点要和被除数的小数点对齐。
生5:如果商的小数点不和被除数的小数点对齐,商就不是1.43,商不是1.43,那么验算的话,商和除数相乘就得不到被除数。
生6:除到被除数的个位时还余下6,这时要跟被除数十分位上的4合起来一起除以15,合起来的数是64个十分之一,所以得到的商是4个十分之一,那么4应该写在十分位上,商的小数点自然就要和被除数的小数点对齐。
师:说的太精彩了!(学生自发地给以掌声鼓励)
师:现在请同学用自己的话向同桌说说除数是整数的小数除法的方法。
……
反思:
1、自主探究,小组讨论。教师出示例题后,就让学生独立思考,再在小组内讨论,找到解决的方法,这种把学习的主动权交还给学生,让学生自己去经历探究的过程,有利于方法的掌握和法则的总结。在小组内每个学生能充分发表自己的意见,能听取到别人的意见得到一些启发,也能给别人以提示,最后能在小组内达成一致意见。
2、小组汇报,增加见识。因为在一个小组里形成了一种意见的定势,而通过小组汇报,班级里就会出现不同的见解、思路和方法。这样,让同学大开了眼界,知道解决一个相同的问题,有不同的方案。最后还让学生讨论哪种方案更具代表性和科学性。这样,学生思维的发散性和开阔性不仅得到了培养,而且,学生对“最优化”的意识进一步得到了提高和巩固。
3、问题从学生中来,到学生中去。提出一个问题往往比解决一个问题更重要,学贵与疑。当学生提出问题后,教师不急于回答,马上把问题抛给学生,这样,大胆、充分地相信学生的智慧和能力,给学生以极大的信心。结果,学生果不负教师的期望,一一做了回答。并说得十分精彩。
4、教师是红娘,不是第三者。令人欣喜的是,在这个片段里能听到学生的追问。并且,其他学生,不等教师开口就情不自禁地回答起来。这样的情景是老师最喜欢看到的。出现这样的情景与教师的角色定位是分不开的。
5、变替蝶破茧,为咬茧自出。有意义的学习并非简单的被动接受过程,而是学生主动建构的过程,自主探索是新课程倡导的学生学习数学的重要方式之一,学生总是在自主探索的学习活动中获得亲身的体验,可以说,学生参与自主探索的学习活动越主动充分,所获得的体验就越深刻、丰富,这样,为学生今后的学习和发展就提供了“动力源”,真正实现了“教是为了不教”。
总之,整个片段教学下来,学生的思维得到了发展,能力得到提高,学生的情绪很饱满,参与的积极性很高。但也感觉到有遗憾的地方,致使有的学生还是坚持自己的观点。比如:教师没有进一步引导、讲解和举例,让学生充分认识到“组1:我们组是把21.45米化成2145厘米,结果算式就写成了2145÷15,结果是143厘米,再把143厘米化成1.43米。”这个方案的不足;当组2说出:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商应缩小100倍,得到1.43。”这个方案时,没有让组2的同学充分说出这样做的道理或理由。其实,这个方案就是把被除数看作整数,根据整数除以整数的方法算出商,然后再根据被除数缩小多少倍,除数不变,商也缩小多少倍的规律得到商是1.43。实际上也就是要在商143里点上小数点,追问学生商的小数点该点在哪?这样做了话的话就能和组3同学的方案整合到一起了。可惜,当时老师没有按上面的做法去做。
五年级数学下册教案3
教学目标:
1、通过具体情境和实际操作,培养学生综合运用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。
2、培养学生观察、思考以及与同伴交流的良好习惯。
教学重点:
会用小块方砖铺满某个平面。
教学难点:
计算铺满某个平面需要多少块方砖,多少钱。
教学过程:
一、创设情境
同学们,小明家买了一套新房。近期,家里要装修了。妈妈让小明设计自己的卧室怎样铺地砖。今天就请同学们来帮小明出出主意,和小明一起来研究一下铺地砖中的数学问题。(板书课题)
二、自主探究,合作交流。
(一)算卧室面积
1、买地砖之前要了解哪些相关知识?
2、小明卧室地面的长和宽分别是4m和3m,你们能帮他算算他的卧室有多大吗?
(二)分小组讨论,并填写表格
所需地砖的数量,所需钱数
40厘米×40厘米
30厘米×30厘米
(三)汇报交流方法
1、学生汇报交流
2、得出结论
3、算一算
小明爸爸、妈妈的房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?
学生独立完成,指名学生上黑板板演。
三、巩固新知,练习反馈。
四、全课总结
五年级数学下册教案4
教学目标和要求
1. 会解决有关百分数的简单实际问题,体会百分数与现实生活的密切联系。
2. 在解决实际问题过程中,理解小数、分数化成百分数的必要性,能正确地将小数、分数化成百分数。
教学重点
1. 正确地将小数、分数化成百分数
2. 理解小数、分数化成百分数
教学难点
1 .体会百分数与现实生活的密切联系。
教学准备
1 .计算机课件
教学时数 1 课时
教学过程
一、引入课题
1 .看一看说一说
出示课本图,让学生认真观察然后结合自己的经验说一说什么是“合格率”。
师相机帮助学生理解“合格率”就是合格的箱数占检查的总箱数的百分之几。
2. 、想一想做一做
让学生自由开展讨论,鼓励学生尝试解决教材中的问题
甲牌的合格率: 43 ÷ 50 乙牌的合格率: 52 ÷ 60
二、教学小数、分数化成百分数
1. 当学生在比的过程中,出现矛盾时,引导学生将小数、分数化成百分数,然后在进行比较。
2. 练一练
将下面的分数、小数化成百分数(电脑显示)
0.3560.025
3 、说一说
1. 请学生同桌之间讨论,如何将小数、分数化成百分数
然后学生汇报
小数、分数化成百分数的方法:把小数化成百分数,只要把小数的小数点向右移两位,同时在后面添上百分号;把分数化成百分数,
可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数。
三、巩固练习
1 做一做教科书“试一试”
引导学生根据成活率的意义,独立解决。
2. 生活的百分数
鼓励学生举出生活中求百分数的例子
比如,计算全班同学的出勤率
四.总结
这节课你学会了什么?
五年级数学下册教案5
课题:
列方程解应用题复习(行程问题)
学情分析:
相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。
教学目标(课时目标):
1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;
2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程
3、逐步掌握画线段图分析题目的方法。
教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。
教学难点:认识相遇的过程中理解运用等量关系的解决问题。
教学准备:PPT、练习本
教学过程:
教学活动教学说明
一、复习引入
1、揭题
2、常见的相遇问题类型(手势演示)
(1)同时出发,相向而行
(2)一车先行,另一车再行,相向而行
(3)同时出发,途中一车暂停,相向而行
二、基础练习
1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?
(1)画线段图分析题意
(2)找出等量关系
(3)列式
2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。
小结:(1)相加=总路程
(2)相差=路程差
3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?
小结:(3)到中点相等
4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。
小结:(4)总路程相等
三、巩固提升
5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?
6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?
7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?
8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。
四、思维训练
9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。
五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。
“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。
通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。
板书设计:列方程解应用题(行程)
相遇问题(1)相加=总路程
(2)相差=路程差
(3)到中点相等
(4)总路程相等
教学反思:
行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:
1、合理组织安排教材,激发学生主动参与教学
首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。
追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。
2、运用线段图进行教学,培养学生的分析、观察能力
学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。
3、为学生提供充分的思考、分析的空间
在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。
4、分层递进,满足不同层次需求
在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。
总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。
五年级数学下册教案6
教学目标
1、知识与技能
让学生在条形统计图的基础上认识折线统计图,进一步体会统计在现实生活中的作用,体会数学与生活实际的密切关系。
2、过程与方法
使学生认识折线统计图的特点,会看折线统计图,并能根据数据进行合理分析,培养学生的合作意识和实践能力。
3、情感态度与价值观
能从统计图中发现数学问题、解决问题,并能体会统计知识在生活中的意义和作用。
教学过程
(一)情境引入
师:同学们都喜欢机器人吗?同学们可以自己制作,锻炼动手能力。我们了解到xx~xx中国青少年机器人参赛队伍的参赛队伍支数情况,于是做了一份统计图。出示条形统计图。你能从中获得什么信息?回忆条形统计图的特点。
(二)探究新知
1、为了更明显的看出各年参观科技馆的人数增减情况,我们来学习一种新的统计图。
出示折线统计图(板书标题:折线统计图)
说一说它的横轴、纵轴分别表示什么?
统计图上的各点又表示什么意思?
2、分析折线统计图
小组讨论:
(1)中国青少年机器人参赛队伍的数量有什么变化?你有什么感想?
(2)折线统计图有什么特点?
小组交流汇报讨论结果。
师带领学生从点和线两方面分析总结折线统计图的特点。
师问:在折线统计图中我们是用什么来表示数据?(板书:点表示数量的多少)
我们明明用点来表示数量的多少,而它却叫做折线统计图你,说明这些线段中肯定藏着一些奥秘。
师问:观察一下折线统计图里面的各条线段,它们有什么作用?
(板书:线表示数量的增减变化)
3、中国已经进入老龄化社会,尤其是上海,早在20世纪70年代末就进入了老龄化。出生人口数和死亡人口数是重要的影响因素。下面是一个小组调查的xx—xx年上海出生人口和。小组讨论:如果要看出生人口数和死亡人口数变化情况,该怎么办?
分别出示上海出生人口数和死亡人口数统计图。
4、提问:请比较出生人口数和死亡人口数变化情况。怎样才能更方便地比较呢?
(1)出示复式折线统计图,指出复式折线统计图的标题和图例在制图中一定要有。
(2)复式折线统计图与单式折线统计图与什么不同?
复式折现统计图可以更方便的分析两个数量增减变化情况。
5、根据复式折线统计图回答问题
(1)观察复式折线统计图,你说说上海出生人口数、死亡人口数的变化趋势吗?
(2)每年的出生人口数和死亡人口数之间存在什么关系?
(3)结合全国xx—xx年出生人口数和死亡人口数统计表,你能发现什么共同的规律吗?(如下表)
年份
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
出生人口数/万人
1708
1652
1604
1598
1621
1589
1599
1612
1619
1596
死亡人口数/万人
821
823
827
835
851
895
916
938
942
953
三、知识巩固
1、甲乙两地月平均气温见如下统计图。
(1)根据统计图,你能判断一年气温变化的趋势吗?
1、2月份气温最低,从3月份气温上升,5~8月份气温最高,从8月份开始,气温下降。
(2)有一种树莓的生长期为5个月,最适宜的生长温度为7~10之间,这种植物适合在哪个地方种植?
这种植物在甲地种植比较合适。
2、陈明每年生日时都测量体重。下图是他8~14岁之间测量的体重与全国同龄男生标准体重对比的统计图。
(1)陈明的体重在哪一年比上一年增长的幅度最大?
14岁比13岁增长的幅度最大。
(2)说一说陈明的体重与标准体重比变化的情况。
四、课堂小结
重点:了解折线统计图的特点,会看折线统计图,能根据折线统计图对数据进行简单的分析。
难点:弄清条形统计图与折线统计图的区别。
五年级数学下册教案7
一、本学期教学目标和总要求:
1、使学生理解分数乘、除法的意义和计算方法,较熟练地进行计算。让学生掌握分数混合运算的计算方法,能正确进行计算。掌握分数乘、除法的数量关系,并能运用其解决简单的数学问题。
2、使学生理解百分数的意义,知道它在实际生活中的应用,会正确地读、写百分数。掌握小数、分数和百分数的互化。正确地解答百分数应用题。
3、使学生掌握长方体和正方体的特征;能辨认长方体和正方体展开图的形状;认识常用的体积单位;理解体积和容积概念;理解、掌握长方体和正方体的表面积、体积含义,并能正确计算长方体和正方体的表面积和体积;会运用表面积和体积知识解决实际生活问题。
4、使学生进一步认识条形统计图、折线统计图和扇形统计图的特点,并学会选择运用。懂得中位数、众数的意义,会从一组数据中找出中位数和众数,并能针对具体问题选择使用。
5、通过实践活动,体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。
二、教材分析:
本册教材的教学内容有:
(1)分数乘法;
(2)长方体(一);
(3)分数除法;
(4)长方体(二);
(5)分数混合运算;
(6)百分数;
(7)统计;
(8)总复习。
三、学生情况分析
五年级同学由于平时对自己要求不严,没有形成良好的学习习惯,作业马虎,字迹潦草,但他们思维活跃。有一部分学生因学习态度不端正,导致学习成绩不理想。全班整体呈现两极分化现象。
因此,备课时应注意优等生与差生的具体的情况,做到有的放矢。另外更要注意面向全体,让学生学得扎实,既要掌握基础知识,也要学会学习方法,更要养成各种优良的习惯。特别要注意思维能力、创新意识、实践能力的培养。
四、全册教学内容及教时安排(以单元为单位)
(1)分数乘法;13课时
(2)长方体(一); 15课时
(3)分数除法; 18课时
(4)长方体(二); 15课时
(5)分数混合运算; 15课时
(6)百分数; 17课时
(7)统计; 7课时
(8)总复习。 4课时
五、提高教学质量措施
在本学期中,要提高教学质量,我想应从以下几个方面入手加以解决:
1、注重因材施教,进一步做好提优补差工作。让学优生和学困生结对,达到手拉手同进步的目的。
2、注意加强数学与实际生活联系,让学生在活动中解决数学问题,感受、体验理解数学。
3、踏踏实实做好教学常规工作,以自己认真负责的工作态度,满腔热情的工作作风,虚心向同事学习,同时争取家长的配合,共同做好对学生的培养。
4、根据我校的实际情况,多媒体教学的优势十分明显。因此,对重点教学内容进行科学合理的课件设计,从而吸引学生主动参与课堂教学实践,提高教学的效率。
六、辅导计划
1、上课时对学困生多加注意,有针对性地提问,找到他们学习上的难点,予以解决。
2、为了做好抓好两头,保住中间的工作要点,努力设计让优生吃得饱,中等生吃得好,差生吃得消的教学手段。设计提问,设计练习,分析内容注意选择性问题。同时明确练习题的难度的层次性,使学生有的放矢。能在较短的时间里,较好的全面的完成练习题。
3、重视差生的错题订正,不厌其烦的反复地帮助差生完成基础性作业,直至学生真正弄懂为止;对差生的作业保证做到面批面改。
4、加强与家长的配合,帮助潜能生从态度到习惯,从上课到家庭作业的指导形成合力。
五年级数学下册教案8
教学内容:
二期教材四年级第一学期课本P22—23
教材分析:
本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。
教学目标:
(一)知识与技能
1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。
2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。
(二)过程与方法
经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。
(三)情感与态度
逐步体会数学与日常生活的密切联系,感知数学的价值。
重点难点:
1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。
2、理解常用面积单位间进率的推算方法。
教学过程:
一、引入阶段
1、感受平方千米
同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位km2来表示,是多少呢?请看大屏幕:(出示)
我们美丽的校园占地面积约0.03平方千米。
我们家园——泗泾镇占地面积约24.2平方千米。
我们的松江区总面积约604平方千米。
你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)
小结:平方千米常用来表示面积大的区域。
[从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感]
2、感知常用的小面积单位
我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1km2能用手势来表示吗?(不能)为什么?(1km2太大)
板书
km2 1 m2=100dm2 1 dm2=100cm2 [通过记忆性口答与形象的手势感知,双重复习所学面积单位,再现常用面积单位的表象。]
3、感知练习
同学们对面积单位的量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的有快又准
在下面()中填入适当的面积单位(课本23页)。
一张邮票的面积约9()
一张乒乓球台面约410()
一间教室的面积约63()
一张软盘的面积约1()
一个排球场占地约162()
上海野生动物园占地约2()
[在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。]
二、探究阶段
1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1 m2可以挤下17人,那么1km2能不能挤得下整个上海的人?(上海总人口为16737700人)
要想解决这个问题,我们需要知道什么?同桌交流:需要知道1 km2等于多少m2,即km2与m2之间的进率,就可以求出1km2可以挤多少人,最终把问题解决。
2、合作探究:我们知道1 km2就是边长为1 km的正方形的面积,(出示边长为1 km的正方形图形)。
那么km2与m2之间的`进率是多少呢?你们能从1 km2的定义来找出它们之间的进率吗?请小组合作完成。
(1)组内尝试解决,师巡视指导。
(2)全班交流解法:(板书)
1km × 1km = 1 km2
1000m× 1000m = 1000000
m2 1km2=1000000m2
(3)再次交流:通过在1km2定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。
3、问题解决:知道了1km2=1000000m2,那么1 km2能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?
4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)
1 km2=()m2 1 m2=()dm2 1 dm2=()cm2
[通过问题设疑,激发学生的求知欲,让学生主动去探究km2和m2的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1km2=1000000m2。其实学生以前在平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知X和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。]
三、运用阶段
1、分层练习:(说出思考过程)
(1)25 m2=()dm 23 km2=()m2
(2)3400 dm2=()m2 9000000 m2=()km2 580cm2=()dm2
(3)70000000 ㎡ —7k㎡=()k㎡
[学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。]
2、拓展练习(同桌讨论)
判断下列各题是否正确,错的请改正。
(1)一个铅笔盒表面的宽度约5 c㎡
(2)教室的面积约30d㎡
(3)一个粉笔盒的表面约0.75 c㎡
(4)上海市的总面积约6341000000k ㎡
[在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。]
3、生活应用:(小组合作)
出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?
解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。
[通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。]
四、总结
这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?
五年级数学下册教案9
教学目标:
1、结合具体的情景,自主探索两位数乘两位数的乘法算法。
2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。
教学重点:
1、两位数乘两位数的估算。
2、探索并掌握两位数乘两位数(不进位)的乘法计算。
教学难点:
掌握两位数乘两位数(不进位)的乘法并能熟练计算。
教学理念:
组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。
教学准备:
课件。
学生准备:
预习课前知识。
教学过程:
一、实践调查
课前让学生在汇景新城作实地调查,调查本小区住户情况
二、课内交流
1、让同学们根据调查所得的数学信息编一道数学应用题。
2、根据所编的题目独立列式
3、探讨和交流如何解决问题。
(1)尝试通过估算结果解决问题。
A、分组讨论不同的计算过程
B、师:根据以上的结果你能判断“这栋楼能住150户吗?”
(2)讨论算法
三、习题巩固:
1、试一试
11×4324×1244×21
2、练一练:
第1、2题
3、第3题,学生独立思考,理解题意,再进行计算
四、综合应用:
陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?
五、课堂总结:今天我们学习了什么知识?你学会了什么?
六、板书设计:
五年级数学下册教案10
第一单元 图形的变换
第一课时
课题:轴对称教学设计
教学内容:教材第3~4页例1和例2。
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:会利用轴对称的知识画对称图形。
教学准备:幻灯片、课件。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
2.
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一 -----第1、2题。
2、课外作业:
板书设计:
轴对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思:
第二课时
课题:旋转教学设计
教学内容:教材第5~5页例3和例题4。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1)引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
5.课内练习:
1.第6页2题。
2.第9页4题、
课后作业:
板书设计: 旋转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学反思:
第三课时
课题:欣 赏 设 计教学设计
教学内容:教材第7~11页。
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1图案2
图案3图案4
对称、平移和旋转知识有广泛的应用。
五年级数学下册教案11
教学目标:
1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。
2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
重、难点:
1、理解图形旋转变换的含义。
2、探索图形旋转的特征和性质。
3、能在方格纸上将一个简单图形旋转90°。
教学准备:多媒体课件 方格纸
教学过程:
一、情景导入
同学们,你们喜欢做游戏吗?今天老师给你们带来一个魔方,再做这个游戏时,最常用到的操作时什么?(旋转)
请同学们用手示范一下怎样进行旋转?(学生用手势演示)
问:你们在做旋转手势时为什么有的向左旋转,有的向右旋转?(因为有的是顺时针旋转,有的是逆时针旋转。)
集体联系顺时针旋转90度和逆时针旋转90度。
请一人到投影前操作魔方。其他同学提示其具体的旋转方向。
师:刚才同学们在做游戏的过程中,反复提到一个词“旋转”,这节课,咱们就来共同研究“旋转”。
板书课题:旋转
二、明确概念
1、联系生活
师:生活中,你还见过哪些旋转现象呢?
生:风扇、陀螺、钟表、车轮、风车……
课件出示几种旋转现象。
师:同学们说的这几种都是旋转现象,那么旋转有怎样的特征和性质呢?我们借助最常见的钟表来进行研究吧。
2、学习例3.
(1)认识线段的旋转,理解旋转的含义。
出示钟表实物。
师:请同学们观察钟表的指针,描述指针从“12”到“1”师怎样旋转的。(指针从“12”绕点O顺时针旋转30°到“1”)
师演示指针由“1”到“3”。
问:这次指针又是如何旋转的?(指针从“1”绕点O顺时针旋转60°到“3”)
师演示指针由“3”到“6”。
同桌互相说一说:指针从几开始?是绕哪个点旋转的?怎样旋转?旋转了多少度?
(2)明确旋转要素
旋转物体 起止位置 绕哪一点 旋转方向 旋转度数
板书: 点 方向 度数
师:要想清楚说明旋转现象,明确以上几个要素最为重要。
三、探索图形旋转的特征和性质
1、观察风车的旋转过程。(出示课件)
请学生说一说,在风的吹动下,风车是如何旋转的。
风车绕点O逆时针旋转90°。
思考:你是怎样判断风车旋转的角度呢?
小组交流观察到的现象。
一是由图1到图2,风车绕点O逆时针旋转了90°;二是根据三角形变换的位置判断风车旋转的角度
三是根据对应的线段判断风车旋转的角度;四是根据对应的点判断风车旋转的角度。
2、小结
通过观察,我们发现风车旋转后,不仅每个三角形都绕点O逆时针旋转了90°,而且,每条线段,每个顶点,都绕点O逆时针旋转了90°.
3、概括旋转的特征和性质。
师:刚才通过观察我们发现,风车旋转后,每个三角形的位置都变了,那么什么没有变呢?(三角形的形状、大小没有变;点O的位置没有变;对应线段的长度没有变;对应线段的夹角没有变。)
四、绘制图形
1、自主画图。
我们已经了解了一个图形旋转的全过程,想不想自己试着画一画呢?
(1)出示例4方格纸。
(2)请学生看清图形。
(3)说一说你是怎样画的。
引导学生明确:对应点与点O所连线段的夹角都是90°;对应点到点O的距离都相等。
学生独立完成。
(4)作品展示,交流画法。
2、总结画法。
我们在画一个旋转图形时,首先要确定它周围的点,然后找到这个图形各个点的对应点,最后连线。
五年级数学下册教案12
教学内容:
教材第76~77页的练习与应用第8—13题。“探索与实践”第14—16题,“评价与反思”。
教学目标:
1、使学生进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法,建立合理的认知结构。
2、使学生通过探索与实践,发展数学思考与实践能力,感受数学活动的魅力。
教学重点:
进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法
教学难点:
运用所学的知识解决简单的实际问题。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
这一单元,我们学习了分数的意义和性质,通过这个单元的学习,你学会了什么?
组织学生进行小组讨论:出示讨论题:
1、什么是分数的基本性质?它与整数除法中商不变的规律有什么联系?你能举例说明吗?2、约分、通分有什么区别?约分、通分的一般方法各是什么?3、你会怎样比较两个分数的大小?学生进行讨论后,进行交流。
二、练习与应用
1、教学第8题
2、教学第9题:
先圈出最简分数,再把其余的分数约分。学生先独立完成,再指名汇报。
3、第10题
引导:前3题可直接根据小数意义,改写成小数,最后1题要根据分数与除法的关系,通过计算改写成小数。
4、第11题比较较分数的大小。
讨论:我们学习了多种分数的大小比较的方法。大家讨论交流后,教师再进行归类。
5、指导第13题
先让学生做,再让学生说出理由。
三、探索与实践
第14题各自记录后计算交流。
第15题要鼓励学生根据要求自主设计图案,再用分数和知识进行描述交流。
要通过展示学生设计的图案,让学生体验成功的乐趣,感受创造之美。
第16题游戏之前要让学生照书上的样子分别做一个转盘,游戏时要帮助理解活动的方法和规则。
要引导学生在游戏中积累比较分数大小的经验,反思比较分数大小的策略。
四、评价与反思
组织学生进行评价与反思时,可以先让学生阅读表中的评价项目,然后回忆学习每部分内容时的表现,再慎重地给五角星涂色,对自己作出公正、合理的评价。
五、作业
第12、13题
五年级数学下册教案13
设计说明
《数学课程标准》指出:“应注重让学生通过观察、操作、推理等方法,发展空间观念。”因此,本节课的教学设计主要突出以下两点:
1.充分利用直观教学,帮助学生形成空间观念。
学生空间观念的形成具有很强的直观依赖性,而图形的外显性属性特征比较容易感知,所以在教学中,充分利用直观教具,调动学生的感官,通过触摸、测量、类比等学习活动,帮助学生认识并建立1厘米3、1分米3、1米3的实际大小的体积观念,从而使学生在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中引导学生将三个体积单位结合起来进行对比,并列举生活中的实例,激发学生的求知欲,让学生在活动中应用数学知识解决实际问题。
2.注重学习方法的迁移。
在认识三个常用的体积单位的新知教学中,采用分层推进的教学策略。首先引导学生摸一摸、量一量、比一比、举例子,认识并学习1厘米3。然后将主动权交给学生,让学生利用认识1厘米3的方法在小组内自主活动,认识1分米3,最后认识1米3。这样不仅培养了学生小组合作学习的能力,同时也提高了学生参与尝试的兴趣。
课前准备
教师准备 PPT课件、1厘米3和1分米3的正方体模型、一块小橡皮擦、一瓶墨水、一个粉笔盒、一个骰子、一粒花生、三根米尺、量杯、纸杯、酒瓶、饮料瓶
学生准备 若干个1厘米3和1分米3的正方体模型、收集的几种瓶子、针筒
教学过程
第1课时 体积单位
⊙复习旧知,引入新课
1.复习旧知。
师:我们以前学过长度单位和面积单位,常用的长度单位和面积单位有哪些?
(生回答,师板书)
长度单位:厘米、分米、米
面积单位:平方厘米、平方分米、平方米
将一块小橡皮擦、一瓶墨水、一个粉笔盒放在讲台上。
师:请按体积的大小将它们排列起来。
(生汇报)
2.引入新课。
师:物体有大有小,如果要测量它们的体积,也需要有一个统一的标准,就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。(板书:课题体积单位)
设计意图:先让学生复习已学过的长度单位和面积单位,然后引出体积单位,从而让学生初步感知长度单位、面积单位和体积单位之间的区别,同时让学生明确统一体积单位的重要性。
⊙操作感知,获取新知
1.认识体积单位。
(1)认识1厘米3。
①出示棱长为1厘米的正方体,让学生动手量一量棱长,明确这个正方体的体积就是1厘米3。
②得出结论:棱长为1厘米的正方体,体积是1立方厘米,记作1厘米3(cm3)。
③摸一摸:让学生直观感受一下1厘米3的大小。
做一做:用橡皮泥切出一个1厘米3的正方体。
看一看:小组内拼一拼2厘米3、4厘米3,感受一下有多大。
④举例:找找看,我们身边哪些物体的体积接近1厘米3?
(反馈:一个骰子、一粒花生等物体的体积接近1厘米3)
(2)认识1分米3。
师:刚才我们通过摸一摸、量一量、举例子等方法认识了1厘米3,我们能不能用同样的方法来认识1分米3呢?
①出示棱长为1分米的正方体,明确这个正方体的体积就是1分米3。
②用硬纸板做一个1分米3的正方体盒子,摸一摸,感受一下1分米3的大小。
③举例:我们身边哪些物体的体积接近1分米3?
五年级数学下册教案14
设计说明
分数除法问题的解决是本单元教学中的一个难点。为了突破这个难点,鼓励学生用方程解决分数除法问题,本节课的教学设计重视发挥学生的主体作用,让学生自己发现问题,亲自感受题中数量之间的关系,并在讨论、交流的学习活动中发现规律,从而让学生体会并归纳出用方程解决分数除法应用题的关键,即从题目的关键句中找出数量之间的相等关系,进而帮助学生学会用方程的方法解决有关分数除法的问题。
苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”因此,本节课的教学设计给学生提供了充分的探究空间,先让学生独立思考,探究解题方法,再在学生独立探究的基础上,让学生小组合作讨论、交流,探究不同的解题方法,使学生对分数除法问题的数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
课前准备
教师准备 PPT课件
教学过程
第1课时 分数除法(三)(1)
⊙创设情境,激趣导入
1.谈话激趣。
师:我们学校的春季运动会快要开始了,同学们喜欢开运动会吗?为什么喜欢开运动会呢?(学生思考后汇报)
师:大家都喜欢哪些项目?(学生举手,教师进行统计)
2.体会等量关系。
师:咱们班喜欢跑步的人真多呀,大约是全班人数的。你们能说一说这个信息中存在着什么样的等量关系吗?(学生思考后汇报:全班人数×=喜欢跑步的人数)
3.导入。
师:不仅我们学校这个时候开运动会,淘气所在的学校也准备开运动会,而且他们学校的学生都在积极地参加训练,争取在运动会上夺得冠军,为班级争光。
⊙合作交流,探究新知
问题。
师:(出示课件)这是他们训练时的情境,请同学们仔细观察,从这幅图中你能发现哪些数学信息?
(学生观察后汇报:有6名同学在跳绳,是操场上参加活动总人数的)
师:同学们观察得真仔细,那么你们能根据这些数学信息提出问题吗?(学生自由提问题)
设计意图:兴趣是学习的内动力,为了激发学生学习的兴趣,充分利用情境图,鼓励学生根据信息大胆地提出数学问题,不仅能使学生的思维活跃,热情高涨,还能使学生主动地投入到学习活动中来。
师:同学们提的问题都非常好,老师这里也有一个问题,你们愿意解答吗?(愿意)
出示问题:操场上参加活动的总人数是多少?说一说,你是怎么想的?
(学生先独立思考,然后与同桌说一说自己的想法)
2.解决问题。
(1)画图解决问题。
师:你们能说一说题中所表示的意义吗?试一试,能不能通过画图来解决这个问题呢?
(学生先交流题中所表示的意义,然后尝试通过画图解决问题并汇报)
预设
生:通过画图,我知道是6人,是3人,这样推算下来,操场上参加活动的总人数是27人。(如果学生采用其他画图方法来解决,教师也要给予肯定)
(2)用方程法解决问题。
①分析题中的等量关系。
师:你知道题中的关键句是哪句话吗?这句话蕴涵了什么样的等量关系?(学生交流,得出:参加活动总人数×=跳绳人数)
②自由解决问题。
师:根据这样的等量关系,你能列方程解决问题吗?快来试一试吧!(学生思考,独立解决问题,教师巡视指导)
③汇报。
师:同学们,谁能说说你是怎样解决这个问题的?
预设
生:我是根据“参加活动总人数×=跳绳人数”列方程解决问题的。
解:设操场上有x人参加活动。
五年级数学下册教案15
一、复习导入
1、根据分数与除法的关系填空。
被除数÷除数说说:分数与除法的关系。
2、提问:80÷20的商是多少?
被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?
回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)
(商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)
二、新课
1、动手做数学。
(1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。
(涂上阴影)
(2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?
(3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。
2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?
(1)观察并研究分子、分母是按什么规律变化的?
1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。
(2)学生发现并归纳得出的规律(揭示:分数的基本性质):
分数的分子和分母同时乘以或者除以相同的数分数的大小不变。
(3)理解意义。
提问:刚才我们根据分数的意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?
先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)
将分数的基本性质补充完整。
3、应用性质、解决问题。
(1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。
(2)把3/4和15/24化成分母是8而大小不变的分数。
要求:独立思考解答、交流方法
(3)师生一起总结方法:
看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。
(4)独立完成练一练。
重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。
变化的依据是分数的基本性质
(5)口答练习十八第2题并说明判断的依据。
4、全课总结:你能将这节课的内容及重点归纳概括一下吗?
5、作业:完成练习十四
理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。
三、难点点拨
在运用分数的基本性质时,会出现以下几种错误:
①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。
②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。
在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。
③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的
【五年级数学下册教案】相关文章:
五年级数学下册教案06-11
青岛版数学五年级下册教案11-08
人教版小学数学五年级下册教案03-16
青岛版数学五年级下册教案11-08
人教版五年级数学下册教案11-26
五年级下册数学教案06-17
人教版小学数学五年级下册教案08-30
五年级下册数学《圆的周长》教案08-26
人教版小学五年级数学下册教案11-23