小学数学教案

2022-05-10 教案

  作为一位杰出的老师,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的小学数学教案4篇,仅供参考,欢迎大家阅读。

小学数学教案 篇1

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  上节课我们复习了比的知识,这节课我们来复习比例的知识以及用正、反比例的知识解决问题。[板书课题:比和比例(二)]

  ⊙回顾与整理

  1.构建比例知识网。

  通过课前的复习,你了解了比例的哪些知识?(结合学生回答板书知识网络)

  预设

  生1:我了解了比例的意义和基本性质。

  生2:我知道了解比例的方法。

  生3:我掌握了判断两个比是否能组成比例的方法。

  生4:我理解了正、反比例的意义,并且能判断两个量成正比例还是反比例。

  生5:我了解了比与比例的区别以及正、反比例的区别。

  ……

  2.复习比例的意义和基本性质。

  (1)比例的意义是什么?比例的各部分名称是什么?

  明确:

  ①比例的意义:表示两个比相等的式子叫做比例。

  ②比例的各部分名称:组成比例的四个数叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  (2)比例的基本性质。

  明确:在比例里,两个外项的积等于两个内向的积。这叫做比例的基本性质。

  (3)解比例。

  根据比例的基本性质,已知比例中的任意三项,都可以求出这个比例中的未知项。求比例中的未知项,叫做解比例。

  (4)判断两个比能否组成比例的方法。

  ①根据比例的意义判断,看两个比的比值是否相等。

  ②根据比例的基本性质判断,看内项之积是否等于外项之积。

  3.复习正比例和反比例。

  (1)正比例的意义和关系式是什么?

  意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  关系式:=k(一定)

  (2)反比例的意义和关系式是什么?

  意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  关系式:x×y=k(一定)

小学数学教案 篇2

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册第XX页的内容。

  教学目标:

  1、知识与技能

  (1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。

  (2)运用三角形任意两边的和大于第三边的性质,解决生活中的实际问题。

  2、过程与方法

  通过实践操作、猜想验证、合作探究,经历发现三角形任意两边的和大于第三边这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验做数学的成功。

  3、情感与态度

  (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。

  (2)学会从全面、周到的角度考虑问题。

  教学重点:

  理解、掌握三角形任意两边之和大于第三边的性质。

  教学难点:

  引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。

  教学准备:

  课件、学具袋。

  教学过程:

  (课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?

  如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)

  如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)

  教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。

  一、动手游戏,提出问题

  教师:请同学们拿出你的1号学具袋,看看里面有什么? (三根小棒。)

  三根小棒能围成一个三角形吗?

  学生先猜。

  教师:光猜可不行,知识是科学,咱们来动手围一围。

  学生动手围,集体交流:有的能围成,有的不能围成。

  教师请能围成和不能围成的同学分别上来展示一下。

  同时板贴:能围成三角形 不能围成三角形

  教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。

  提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?

  引导学生明白:跟三角形的边有关系。

  教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀?

  板书课题:三角形边的关系(让学生收拾好一号学具袋)

  设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?

  二、实践操作,探究学习

  1、动手操作。

  电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?

  教师说明操作要求:

  (1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格);

  (2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围);

  (3)将数据和结果填写在表格中,能围成的用表示,不能围成的用表示。

  学生活动,教师巡视指导。

  2、汇报交流。

  教师:下面就请同学们来汇报一下你的操作结果。

  请不同的学生汇报,教师在课件中输入数据和结果。如下图:

  设计意图:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和3厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。

  3、集体探究。

  第一层次:发现不能围成的原因。

  (1)教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。

  课件演示:当三根小棒分别是1厘米、3厘米和6厘米的时候,围不成三角形。

  教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗?

  引导学生得出:1+36,所以围不成。

  (2)教师:下面我们再来验证一下2厘米。课件演示。

  教师:你发现了什么?会用一个数学关系式表示出它们的关系吗?

  引导学生得出:2+36,所以围不成。

  (3)教师:3厘米也不能围成,是什么原因呢?课件演示。

  提问:它为什么也围不成?你会用一个数学关系式表示出它们的关系吗?

  引导学生说出:3+3=6,所以不能围。

  (4)提出:1厘米、2厘米和3厘米的小棒都围不成。大家观察这三道算式,谁能用一句话说说什么情况下不能围成三角形阿?

  板书(补上小于等于号):两边之和第三边 不能围成三角形

  设计意图:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。

  第二个层次:猜想,初步得出三角形边的性质。

  教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢?

  学生猜出:两边之和大于第三边。

  板贴:两边之和>第三边 能围成三角形?

  同时,教师在旁边画上?

  初步验证猜想:

  教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系?

  教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说?

  同时课件进行演示,得出:4+36。 课件演示。

  教师指着5厘米,问:那5厘米? 得出:5+36

  教师点击:那么下面就依次类推了。课件依次出现算式:6+3 7+3 8+3 9+36

  设计意图:由于有了两边之和第三边,不能围成三角形这个结论作基础,学生会自然而然地想到当两边之和大于第三边的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。

  第三个层次:引发矛盾,突破难点。

  教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+36呀,这符合我们刚刚得出的结论啊?

  先让学生说一说,然后进行课件演示。

  教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。)

  教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等)

  教师:那还要看哪一组?(6和9的和与3比)

  引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说?

  引导学生得出任意两字。

  设计意图:9+36却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的,必须要看三组,这样任意在这里的引出也就水到渠成了。

  第四个层次:再次验证,明确三角形三边的关系。

  教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。

  学生交流,集体汇报。

  教师:在同学们的猜想前面加上任意两字,通过再次验证后,发现它就是一条正确的结论。(教师擦掉?)咱们来一起读一遍。

  设计意图:加上任意两字以后,结论是不是就正确了呢?这时,让学生回过头来,再次验证能围成三角形的三边是不是具备这样的`关系,不仅加深了学生对三角形边的关系的理解,也让学生充分经历了猜想验证结论这一科学的学习过程。

  第五个层次:找出判断不能围成的简捷方法。

  教师:在这些不能围成三角形的三边中,它们也应该有几组算式?(3组)

  那我们在判断它能不能围成的时候,是不是要把三组算式都找出来啊?

  引导学生明确:只要找到一组不符合能围成的条件就可以了。

  教师:谁能快速地说出10不能围成的原因?

  设计意图:怎样最快的找到不能围成的原因,在这里也应该让学生明确。方法最优化应随时有效地渗透在教学环节中。

  第六个层次:再次验证任意,将结论从特殊扩大到一般;同时发现判断能围成三角形的简单方法。

  (1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角形的第三边,得到这样的结论的。那是不是任意一个三角形的三边都具备这样的关系呢?

  教师演示课件,随意拖拉两次,让学生用估算的方法说出三边的关系。

  设计意图:一开始的研究,是从给定的3厘米和6厘米的两边着手的。在这里通过课件的直观演示,将特殊情况推广到一般情况,让学生明白任意一个三角形的三边都有这样的性质。

  (2)提出:在判断能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?

  让学生先充分地进行交流。

  引导学生发现:因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了。所以呢,这要把只要把较小的两条边加起来这一组进行判断,就可以代表三组了。还需要每组都判断吗?

  设计意图:我以为,在全体学生都已经掌握的基础上,肯定会有少数学生发现判断能围成三角形的诀窍。教师的设计应当顾及到这样的学生。所以,在这里可以及时地引导全体学生都掌握简单方法。

  三、深化认知,联系实际,拓展应用

  1、轻松小游戏

  教师:同学们的表现真是棒极了,老师为了表扬大家,给你做个小游戏,想不想啊?

  出示:有人说自己步子大,一步能跨两米多,你相信吗?为什么?

  请两个学生上来跨一步。

  先让学生充分的交流。

  教师:你能用我们今天学习的知识来解释一下吗?

  课件演示:两腿和地面跨出的距离形成了一个三角形。

  教师:可是有个人说,我可以。你们知道是谁吗?

  出示姚明图片,身高:226厘米;腿长131厘米。

  设计意图:通过游戏的形式解决问题,使学生主动地把本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步达到会学数学的境界,并再次向学生渗透看问题要全面的原则。

  2、判断:下面哪组的小棒能围成一个三角形?(单位:厘米)(有图)

  (1)3、4、5 (2)3、3、3 (3)3、3、5 (4)2、6、2

  设计意图:这道基础题的练习,既是对前面所学内容的巩固,同时引导学生利用简单方法快速地进行判断。

  3、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。

  设计意图:从问题中来,到问题中去,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。

  四、全课小结,从考虑问题要全面,引出第三边的取值范围

  设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:3.5厘米行吗?3.2呢?3.1呢?3.01呢?不断地向3逼近,学生自然会想到3.0001也是可以的,那该怎样表述呢?比3厘米长已呼之欲出;以此思考,学生不难得出又必须比9厘米短。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。

小学数学教案 篇3

  第八单元数学广角-数与形(教案)

  【教学目标】

  知识技能

  1.重视“数”“形”之间的联系,找到解题规律。

  2.引导学生探究算式左边的加数与大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。 过程与方法:

  1.借助“数”“形”之间的关系,解决相关问题。

  2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。

  情感态度价值观:

  在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。

  【教学重难点】

  重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。 难点:体验到数学的极限思想。

  【教具准备】

  教具:正方形块 ,课件。

  学具:完全相同的小正方形纸卡若干

  【教学过程】

  一、激趣导入

  师:老师听说咱们班的同学很爱听故事,今天老师也带来了一个,这个故事叫 《形帮数》想听吗?

  生:想、、、、、、

  师:(出示第一张形与数的课件,背景音乐响起)在数学王国里住着数和形两个大家族,他们有时争吵,但更多的是互相帮助、、、、、、(故事讲完)同学们,你们知道形是怎么帮助数解决问题的吗?这节课让我们一起到人教版数学六年级上册第八单元 数学广角—数与形 中寻找它们解决问题的过程及方法。(板书课题)

  二、探究新知

  1.教学例1。

  (1)出示例题。

  2 2 1=(1)

  1+3=(2) 1+3+7=(3) 2

  (以故事的方式讲解)让我们再次回到故事中,形大步走到数的面前,挺着肚子 1 2

  说:“考考你,你算算我有多大?”数上下(转 载于:wWW.cSsYq.cOM 书业网:8单元数学广角数与形)打量了一下形:“哼!!小菜一碟,你是正方形,边长1厘米,面积等于边长乘以边长,就是1×1=(1) ;看到数能快速地说出来,形说:“别高兴的太早,后面还有呢!”接着它把和它长得一样大小的三个兄弟叫到它身边,和它站在一起,一个挨着一个,整齐地排成两排,(让学生拿出正方形按照形说的摆出来)形说:“那你现在能算出我们有多大吗?”数说:“你的面积是1,你的三个兄弟都是和你一样大小的正方形,它们每个的面积也是1,三个的面积就是3,你们四兄弟的面积是1+3=4,4是2的平方。”

  师:同学们,数算出来的结果对吗?你们也用其他的方法来算一算,帮数检查一下,看看结果是否正确?动手做在草稿纸上,做好的同学请举手。(引导学生用求大正方形的面积的方法计算:它们排成两排还是一个大正方形,不管是行还是列都由两个小正方形组成,边长也是两个小正方形的边长相加,所以大正方形的2 面积等于2×2=4=(2) )等学生完成之后,个别提问方法,让学生知道有两种方法来做。故事内容:“待数算完之后,形又把和它们一样大小的五个正方形叫到它们的身边,一个紧挨一个排成一个大正方形,你们知道形是怎样排列的吗?请你试着排列出来。”请学生上来排列,其他学生小组合作,教师巡视,指导学生列算式。检查结果,讲解过程。

  (2)小组合作:动手排列第四个,第五个图形并写出相应的算式,总结发现。 ①排列图形、观察、讨论。

  仔细观察,看一看上面的图形和算式左边有什么关系?

  ②汇报发现。

  发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;

  发现二:算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和。

  发现三:算式左边的加数和正好等于大正方形中每行(或每列)的小正方形个数的平方。

  [算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方]

  发现四:从1开始的连续奇数的和正好是这几个奇数的个数的平方。

  三、应用知识。

  1. 你能利用在《形帮数》的故事中找出的规律,直接写一写吗?(可借助学具摆一摆) 2 ①1+3+5+7=( ) 2 (1+3+5+7=4 ) 2 ②1+3+5+7+9+11+13=( ) 2 (1+3+5+7+9+11+13=7 )

  ③____________________=92 (1+3+5+7+9+11+13+15+17=9 2 )

  2. 请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+5+3+1 =() 5 2

  3.请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+9+11+13+11+9+7+5+3+1=( )85

小学数学教案 篇4

  教学内容:义务教育课程标准实验教科书数学四年级下册第48-49页。

  教材分析:《营养午餐》的这一内容的设置,是为了系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,透过生动有趣的营养搭配、调配系列活动而呈现出来,进而提高学生用数学解决问题的能力,同时也可以使学生感受数学思想方法的奇妙与作用,逐步形成有序地、严密地思考问题的意识,加强学生综合运用知识解决问题和解决问题策略多样化的能力和意识。

  教学目标:

  知识技能目标:1、了解健康常识,知道吃好午餐的重要性。

  2、会用专家的建议正确地分析午餐菜肴中营养成分,能设计调配科学、合理午餐食谱。

  情 感 目 标 :懂得科学、合理营养饮食的重要性,养成良好的饮食习惯。

  教 学 重 点:能合理地调配午餐食谱,对学生平时不正确的饮食习惯有所改变

  教 学 难 点:理解“不低于、不超过”的含义

  教 学 准 备:整合课件,电脑,白板。

  教 学 过 程:

  一、创设情境,轻松导入

  (1)俗话说,民以食为天,每个人都离不开吃。今天,老师准备了很多精美的菜肴图片想和大家一起来欣赏。(出示菜肴图片)

  (2)你平时都喜欢吃什么菜?

  (3)你昨天中午吃了什么?你认为自己吃得科学、合理吗?

  今天我们就来做一回小小营养师。

  二、小小营养师

  (一)分析菜谱

  1、叮叮餐厅推出10款最新菜款,欢迎您的光临。(课件出示)

  2、这些菜可以进行如何分类?(肉类和菜类或荤菜和素菜)

  3、这些菜中,哪几种你们最喜欢吃?

  (二)初次点菜

  1、让学生按照个人喜好,任点三个菜

  我们就来做一回小小点菜员吧。请你们从这份菜谱中点出自己最爱吃的3道菜来,你想吃什么就尽情点什么。好,现在开始,看谁能当好小小点菜员。

  2、点完三种菜后,请同学们算一算自己所点的菜热量和、脂肪和、蛋白质和各是多少。(填入表格中)。

  请三名学生汇报不同的菜谱(菜式热量总和很低、脂肪总和很高和合理的菜谱各一份)。

  你对他们所点的菜有没有意见?同学们的话说得有道理吗?

  (三)下面我们就来看一看营养专家是怎么说的

  1、出示专家建议。让学生阅读饮食与健康(专家建议)。(课件出示)

  2、让学生结合实际说说“不低于”和“不超过”的具体含义。

  师:看了营养专家的话,你们知道了什么?

  生:我们知道:10岁左右的儿童从每餐午饭中获取的热量应不低于2926千焦,脂肪不超过 50克。(生边说师边板书:热量应不低于2926千焦,脂肪不超过50克)

  师:其实人体需要的营养成分有很多,但最基本的是热量和脂肪。

  师:营养专家说的“热量不低于2926千焦”中的“不低于”是什么意思?“脂肪不超过50克”中的“不超过”又是什么意思?

  3、师:按照专家提供的这两条基本的营养标准,每个同学都检验一下,看看自己刚才点的菜符不符合这两条营养标准。跟同桌同学谈谈自己点的菜为什么符合或为什么不符合标准。

  (四)合理调配

  师:那么,你们觉得怎样配菜容易达到这两条标准呢?请各小组讨论解决这些问题:(课件出示)

  (1)如果三道菜点的全是荤菜,热量和脂肪都能符合标准吗?( 热量能符合标准,但脂肪不符合标准。)

  (2)如果三道菜点的全是素菜,热量和脂肪都能符合标准吗? (脂肪能符合标准,但热量不符合标准)

  (3)怎样配菜才容易使热量和脂肪都符合标准?( 荤素搭配容易使热量和脂肪都符合标准。)

  师板书:搭配

  师:同学们真聪明!通过自己的努力找到了科学、合理的配菜方法。现在就请同学们重新搭配这些菜,使它符合营养专家所说的两条标准。标准是:科学、合理

  (五)选五个不同搭配上台演示。介绍自己的菜式

  哪一种搭配获取的蛋白质最多?

  (六)对于班上偏胖或偏瘦同学的饮食习惯,你有什么好的建议?

  师:同学们,不科学的饮食一定会对身体造成不良的影响。我们在选择食物时,不能只想着好吃,也要进行合理的搭配,让我们吃得更合理、更科学,使我们的身体更健康。因此,老师建议你们:在日常饮食中要克服偏食、挑食、厌食的不良习惯,可以做到吗?

  三、全课总结

  1、这节课的学习你有什么收获?

  2、本节课的学习对你有什么帮助或启示?

  《营养午餐》教后反思:

  本节课围绕午餐营养问题设计相应的数学综合应用活动,组织学生调配符合营养标准的午餐,组织学生通过自主探索,合作交流等方式。一方面使学生综合应用简单的排列组组合、统计等相关知识解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识;另一方面,学生的观念也从纯粹按自己的喜好点菜到考虑菜式的科学与合理性,有效促使了学生学生克服偏食、挑食的毛病,养成科学饮食的习惯。

【有关小学数学教案四篇】相关文章:

有关小学数学教案范文6篇05-09

有关小学数学教案模板10篇05-09

《观察物体》小学数学教案04-06

小学数学教案:《循环小数》03-31

小学精选数学教案优秀范文03-16

小学数学教案(精选15篇)02-25

【热门】小学数学教案6篇04-23

【推荐】小学数学教案四篇05-09

【实用】小学数学教案9篇05-09

小学数学教案汇编五篇05-08