《四边形》教案

2021-11-16 教案

  作为一名无私奉献的老师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?以下是小编收集整理的《四边形》教案,仅供参考,希望能够帮助到大家。

《四边形》教案1

  教学目标

  1、知识与技能:

  理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

  2、过程与方法:

  在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

  3、情感态度与价值观:

  在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

  教学重难点

  1、教学重点:

  正确理解“相交”“互相平行”“互相垂直”等概念。

  2、教学难点:

  理解平行与垂直概念的本质特征。

  教学工具

  多媒体设备

  教学过程

  一、情境导入,画图感知

  1.学生想象在无限大的平面上两条直线的位置关系。

  教师:摸一摸平放在桌面上的白纸,你有什么感觉?

  (1)学生交流汇报。

  (2)像这样很平的面,我们就称它为平面。(板书:平面)

  我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?

  (3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。这时平面上又出现了另一条直线,这两条直线的位置关系是怎样的呢?会有哪几种不同的情况?

  2.学生画出同一平面内两条直线的各种位置关系。

  把你想象的情况画在白纸上。注意一张纸上只画一种情况,想到几种就画几种,相同类型的不画。

  二、观察分类,感受特征

  1.展示作品。

  教师:同学们想象力真丰富!相互看一看,你们的想法一样吗?老师选择了几幅有代表性的作品,我们一起来欣赏一下。

  如果你画的和这几种情况不一样,可以补充到黑板上。

  不管哪种情况,我们所画的两条直线都在同一张白纸上。因为我们把白纸的面看作了一个平面,所以可以这样说,我们所画的两条直线都在同一平面。(板书:同一平面)

  2.分类讨论。

  教师:同学们的想象力可真丰富,画出来这么多种情况。能把它们分分类吗?为了方便描述,咱们给作品标上序号,可以怎么分?按什么标准分?

  (1)先独立思考:我打算怎么分?分几类?

  (2)再小组交流:怎么分?为什么这么分?

  3.汇报交流。

  教师:哪组来说一说你们的研究结果?

  学情预设:

  (1)分两类:交叉的为一类,不交叉的为一类。

  (2)分三类:交叉的为一类,不交叉的为一类,快要交叉的为一类。

  (3)分四类:交叉的为一类,不交叉的为一类,快要交叉的为一类,交叉成直角的为一类。

  教师:你们所说的交叉在数学上叫相交。(板书:相交)

  质疑:2、3两幅图中的两条直线相交吗?

  学生说明自己的想法和理由。

  课件演示:两条直线延长后相交于一点。

  图6属于哪一种情况?(相交)

  小结:同一平面内,两条直线的位置关系有相交和不相交两种,但在判断时我们不能光看表面,而要看他们的本质,也就是这两条直线延长后是否相交。

  3自主探究,揭示概念

  1.揭示平行的概念。

  (1)感知平行的特点。

  教师:这两条直线就真的不相交吗?怎样验证?

  结合学生回答用课件演示两条直线无论怎样延长都不会相交的动态过程。

  (2)揭示平行的定义。

  ①教师:像屏幕上这样,两条直线的位置关系在数学上叫什么呢?

  ②课件出示:在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。(板书:互相平行)

  ③教师:你认为在这句话中哪个词应重点强调?为什么?

  结合学生回答,教师举例:这两条直线互相平行吗?为什么?(出示一个长方体)

  学生体会“同一平面”和“互相平行”的含义。

  (3)介绍平行符号。

  ①课件分别呈现三组不同位置的平行线。

  ②教师:这三幅图中的直线a与直线b都互相平行,我们用符号“∥”来表示平行,a与b互相平行,记作a∥b,读作a平行于b。

  ③教师:用这样的方法来表示a平行于b,你们觉得怎么样?是呀,像这样来表示两直线互相平行,既形象又方便。

  (4)体验生活中的平行现象。

  教师:生活中我们常常遇到平行的现象,你能举几个例子吗?

  学生举例后,教师可用多媒体课件适时补充一些生活中的实例。

  2.揭示垂直的概念。

  (1)感知垂直的特点。

  教师:刚才同学们在画两条直线的位置关系时,还画了相交的情况。我们一起来看一看这些相交的情况。(课件或实物投影呈现几组典型的作品)

  教师:观察一下这些相交的情况,你们发现了什么?(都形成了四个角,有的是锐角,有的是钝角;还有的比较特殊,四个角都是直角……)

  教师:你怎么知道他们相交后形成的角是直角呢?请同学们量一量,刚才所画的两条相交直线组成的角分别是多少度?通过测量,你们又有什么新发现?

  学生通过测量能够发现有一种情况比较特殊,所形成的四个角,每个角都是90°。

  (2)认识垂直的定义。

  教师:如果两条直线相交成直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  课件呈现三组垂线。

  教师:观察这里的三幅图,它们有什么相同点和不同点?根据刚才的比较,能尝试总结你的发现吗?

  预设:垂直要看两条直线相交是否成直角,而与怎样摆放无关。

  (3)介绍垂直符号。

  教师:垂直和平行一样,也可以用符号表示,就是“⊥”,直线a与直线b互相垂直,记作a⊥b,读作a垂直于b。

  (4)感受生活中的垂直现象。

  教师:生活中我们还会常常遇到垂直的现象,你能举出生活中一些有关垂直的例子吗?

  学生举例后,教师用多媒体课件补充一些实例。

  教师:同学们,以上内容就是今天我们学习的有关平行和垂直的知识。

  (板书课题:平行与垂直)

  4练习巩固,拓展延伸

  1.下面各组直线,哪一组互相平行?哪一组互相垂直?

  2.下面每个图形中哪两条线段互相平行?哪两条线段互相垂直?

  结合新知完善对长、正方形特征的认识。

  5全课小结

  通过今天这节课的学习,你有什么收获?还有什么疑问?

  1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

  2、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  课后小结

  通过今天这节课的学习,你有什么收获?还有什么疑问?

  1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

  2、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

《四边形》教案2

  教学目标:

  (1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。

  (2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。

  教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学准备:教具、投影。

  教学过程:

  一、复习准备:

  1.平行四边形、三角形、梯形的概念。

  2.平行四边形、三角形的性质。

  3.各图形的对称情况。

  4.图形的大小用面积来表示。 (引人新课)

  二、新授

  1.投影,并观察,填书本P1的空格

  2.操作:用割补法把平行四边形拼成长方形。

  3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?

  4.得出:

  长方形的面积= 长 × 宽

  平行四边形的面积=( )×( )

  5.怎样计算下面图形的面积?

《四边形》教案3

  一、学习目标:

  1、了解中点四边形的概念

  2、灵活应用三角形的中位线性质研究中点四边形与原四边形的关系。

  二、学习重点、难点

  1、重点:研究中点四边形与原四边形的关系;

  2、难点:找出中点四边形与原四边形的形状的变化规律。

  三、学习过程:

  (一)、复习:三角形的中位线性质:利用右图用几何语言表示

  (二)、练习:

  1.证明:顺次连结四边形的各边中点所组成的四边形(简称中点四边形)是平行四边形。

  已知:

  求证:

  2、与周围的同学交流一下证明方法。

  从以上的证明过程中可知:中点四边形的边与原四边形的对角线有密切关系。

  3、通过画图猜想:顺次连结矩形的各边中点所组成的四边形是什么形状?

  请证明你的结论。

  4、回味刚才的证明过程,想一想:要使中点四边形是菱形,原四边形一定要是矩形吗?

  由此可得:只要原四边形的两条对角线 ,就能使中点四边形是菱

  形。

  5、通过画图猜想:顺次连结菱形的各边中点所组成的四边形是什么形状?

  请证明你的结论。

  6、回味刚才的证明过程,想一想:要使中点四边形是矩形,原四边形一定要是菱形吗?

  由此可得:只要原四边形的两条对角线 ,就能使中点四边形是矩形。

  7、讨论一下:要使中点四边形是正方形,原四边形要符合的条件是

  8、小结:

  (1)中点四边形最起码是一个 ;

  (2)原四边形的对角线与中点四边形的边有密切关系:

  原四边形的两条对角线相等 中点四边形的邻边也 中点四边形是 形

  原四边形的两条对角线垂直 中点四边形的邻边也 中点四边形是 形

  原四边形的两条对角线垂直且相等 中点四边形的邻边也

  中点四边形是 形

  作业:1、顺次连结等腰梯形的各边中点所组成的四边形是特殊的平行四边形吗?

  证明你的结论。

  2、中点四边形的面积与原四边形的面积之比是 。

  第Ⅱ部分 反思

  一、教材地位与学案的设计思想

  这节课的内容安排在华东师大版教材的九年级下册第27章证明一章后的课题学习,这样的安排很恰当,学生刚刚学完了用推理的方法研究三角形和四边形。这节课的内容是三角形中位线的应用,也是对特殊平行四边形性质、判定的巩固,还是对学生研究变式图形能力的训练--------这是一个动态图形的系列问题:无论原来的四边形的形状怎样改变,顺次连结它各边的中点所得的四边形最起码是平行四边形。而且平行四边形又包含了矩形、菱形、正方形,这时,原四边形要作怎样的变化呢?通过这节课的学习,使学生对中点四边形与原四边形的形状的变化规律有一个系统的认识。

  学生往往不重视课题学习或找不到方法去研究这个课题。而这节课的学案设计就是为学生研究这个课题在方法上搭建了一个平台。

  在使用旧人教版的时候,为使学生对中点四边形与原四边形的形状的变化规律有一个系统的认识,也曾这样设计:

  在每个学生一台电脑的网络室利用《几何画板》教师先做两个页面,第一页原四边形设计为平行四边形,第二页原四边形设计为任意四边形。学生只需用鼠标拖动原四边形或中点四边形的一个顶点,就可实现动画。两页都有辅助线(原四边形的对角线)的显示/隐藏按钮。每个同学须填写一份实验报告。实验报告的问题设计如下:

  在学生完成前12分钟的实验后,教师利用实物投影仪展示一些同学的证明过程、小结实验情况、对比证明方法,让学生明确“四边形EFGH的形状的变化与原四边形的两条对角线有着密切的关系”----为下一阶段的实验铺路。第二阶段的实验有足够的时间让学生操作,而且绝大多数同学能遵循题目的暗示将中点四边形EFGH进行动画,通过中点四边形EFGH形状的改变来观察原四边形ABCD的变化。所以第1题完成情况良好,又为第二题铺平了道路。最后由同学自荐所出题目,公认最好的作为作业布置。

  二、课堂实施情况

  对比两种设计方案的实施情况:

  ①实验报告的设计没有在文字上给学生具体方法的指导,普通班相当一部分学生在实验的第二阶段中不知怎样证明自己所得的结论,也正因为如此给成绩好的学生留下了较大的思维空间;学生不用自己画图节省了时间。但也留下了缺憾------怎样画出符合题意的示意图也是要训练的,而且在画图的过程中还能对题意有更深的理解。当时在重点班的实施效果较好,普通班的实施情况不理想------大约一半学生达不到实验的预期目的。

  ②学案(第一稿)的设计弥补了实验报告的不足,由于设计时多种情况都让学生从熟悉的图形:矩形、菱形入手,证明它们的中点四边形分别是菱形、矩形。然后通过“回味刚才的证明过程,”让学生注意到在证明过程中运用了矩形、菱形的对角线相等、对角线互相垂直的性质,而没有用对角线互相平分的性质,从而把图形变式,将特殊情况予以推广。这种过渡层层递进,分散了难点,课堂上进行的较为顺利。而且学案的设计由始至终在研究方法上贯穿一条主线:原四边形的对角线与中点四边形的边有密切关系------原四边形的两条对角线若垂直、相等,中点四边形的相邻边也垂直、相等。课堂上,学生的证明方法较为多样,如下图,学生通过证明图形Ⅰ、Ⅱ、Ⅲ、Ⅳ全等来证明中点四边形是菱形,但大多数学生遵从学案中的“暗示”,连结两条对角线,利用中位线证明。通过讨论和展示多种证明方法既开拓了学生的思路又始终引导学生沿主线展开研究。

  在实施过程中,由于要落实画图、写已知、求证及证明,普通班两节连堂方可完成,重点班一节课可完成。

  三、课后作业反馈

  第1题:

  ①有少部分学生把课堂小结的图形变化规律当作定理直接应用于证明过程中;

  ②有少部分学生没有写已知、求证;

  ③有少部分学生的图形太特殊导致中点四边形是正方形,而在证明时又把菱形的识别当作正方形的识别;

  第2题:在课间与学生的口头交流得知,大部分学生知道可用特殊值法并求

  出了正确结果,但其中有些学生对于一般情形下的解法是没掌握的。

  四、学案改进

  给出学案中1、3、5、中的示意图并将写“已知、求证”删去以免冲淡主题;改为要求学生画4、6、的示意图,让学生更好地理解4、6、是3、5、的深入与推广(教师注意巡堂,发现学生画出的是3、5、条件下的图形应予以纠正)。

  作业的第2题要求学生交流解法。

《四边形》教案4

  一、学生起点分析:

  学生的知识技能基础:学生已经认识了生活中的轴对称现象,掌握了轴对称图形的概念及其性质,因此在学习中心对称图形时可以进行比较。另外,学生还掌握了一些常见中心对称图形的性质,例如平行四边形、矩形、圆形、正方形等,所以在研究这些图形的中心对称性时是有帮助的。

  学生的活动经验基础:生活中存在大量的实例,可以作为这一节课的活动基础。

  二、学习任务分析:

  基于已有了研究轴对称图形的基础以及旋转知识,本节课教学的重点在于理解中心对称图形的定义及其性质,难点在于理解中心对称图形的定义,会判断哪些图形是中心对称图形,并且还要发展学生的应用意识,会寻找生活中的中心对称图形,会分析各种图案,标志是中心对称图形,还是轴对称图形。

  因此本节课的教学目标是:

  (1)经历观察发现中心对称图形的有关概念以及性质的过程,理解中心对称图形的概念和性质。

  (2)会判断一些常见图形是否是中心对称图形。

  (3)会判断生活中的一些图案,图标是否具有中心对称性。

  (4)学会运用数学眼光分析身边事物的能力。

  (5)培养审美能力。

  教学重点:理解中心对称图形的定义及其性质

  教学难点:理解中心对称图形的定义,会判断哪些图形是中心对称图形

  三、教学过程设计:

  第一环节:学生课前收集一些图案,图标等。

  以4人合作小组为单位,开展收集图案活动:

  (1)美丽图案

  (2)各车的标志

  (3)商标

  活动方式:提前准备

  活动目的:通过以上活动,培养学生运用数学眼光分析周围世界。

  第二环节:情境引入

  在学生收集到的图案中,首先请学生先选择出是轴对称图形的图案,与学生共同回顾轴对称图形的知识。然后,教师挑出具有另一种对称性的图案(中心对称的),引入课题。

  第三环节:学习新知

  1.探究活动:平行四边形ABCD

  运用电脑演示下列过程:连结对角线AC,BD交点为O,确定原来平行四边形的位置,然后使它绕着点O旋转180°。

  2.提出问题:(1)此时的平行四边形是否与原来的图形重合?

  (2)旋转中心,旋转角各是多少?

  (3)为什么旋转后的平行四边形会与原平行四边形重合?

  3.定义概念:

  像平行四边形这样,一个图形绕着一个固定点旋转180°后能与原图形重合的图形叫中心对称图形,这个固定点叫对称中心。

  观察与思考:设点是某个中心对称图形上的一点,绕对称中心0旋转180°后,它变成了点B,点A与点B就是一对对应点,且OA=OB

  结论:中心对称图形上的每一对对应点所连接的线段都被对称中心平分。做一做:

  (1)平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并验证作的结论。因此还可以验证平行四边形的哪些性质?

  (2)线段是中心对称图形吗?对称中心是什么?

  (3)你还能找到哪些常见的几何图形是中心对称图形?它们的对称中心是什么?

  活动方式:1)四人小组活动,合作交流:

  2)全班讨论

  活动目的:尽可能多地找出常见的图形进行知识归纳,其中包括矩形,菱形,正方形,正三角形,圆等。

  议一议:1)下面的扑克牌中,哪些牌的牌面是中心对称图形吗?

  红桃2 黑桃9 方片J 黑桃8 梅花3

  答:黑桃K,方片9

  2)再举出生活中的一些中心对称图形

  第四环节:练习提高:

  随堂练习1,2

  第四环节:课堂小结

  1)这节课我们认识了中心对称图形

  2)像线段、平行四边形、圆、偶数边的正多边形就是中心对称图形

  3)会辨认生活中哪些图案是中心对称图形

  第五环节:作业布置

  习题4.12 3

  四、教学反思

  中心对称图形比轴对称图形难理解和为学生所接受,因此应该充分运用多媒体动画辅助教学,帮助学生理解中心对称图形的概念和性质,并能认识到生活中哪些图案是中心对称图形为了发展学生兴趣,可以引导学生进行图案设计,把所学知识应用于实际,提升学习水平和能力。

《四边形》教案5

  教学目标:

  1. 能够认识和辨别三角形、四边形及多边形。

  2. 知道长方形、正方形是特殊的四边形。

  3. 培养学生的空间观念。

  教学重难点:

  认识和辨别三角形、四边形及多边形。

  教学过程:

  一、创设情境,引入新知。

  (出示书上图1)

  1. 同学们,老师今天要带你们到图形王国里去参观,大家看看其中有你认识的朋友吗?

  2. 我们已经认识了三角形、正方形、长方形这几个平面图形,今天这节课我们再来认 识几个新朋友。

  二、动手操作,探究新知。

  1.先请你动动小手,把这些图形来分分类。

  2.把你分出的结果在小组中交流一下。

  3.各小组汇报分类结果。

  第一种情况:分成5类,三角形:4、8、11、12 长方形:1、3、13 正方形:6、14 四边形:2、5、9、10 五边形:7

  第二种情况:分成3类,三角形:4、8、11、12 四边形:1、2、3、5、6、9、10、13、14 五边形:7

  大家比较一下,这两种分法有什么相同点和不同点?

  4. 为什么大家都同意把4、8、11、12这些三角形放在一起,它们有什么共同的特征? (这些三角形都是由三条线段围成的。)

  师:我们把由三条线段围成的图形叫做三角形。(板书) 师:什么叫“围成”?(出示图形)“围成”指全部封闭起来。

  5. 为什么在第二种分法中,你们要把第一种的三类合并成一类呢? (因为它们都是由四条线段围成的图形。)

  你能给四条线段围成的图形取个名字吗?

  板书:由四条线段围成的图形叫做四边形。

  在这些四边形中,正方形和长方形都是由四条线段围成的,也就是说它们是特殊的四边 形。(板书)

  6. 这就是我们今天要学习的新本领:三角形与四边形。(出示课题)

  7. 认识多边形:现在你知道图7叫什么图形了吗?(五边形)为什么? (由五条线段围成的'图形是五边形)

  师:老师有一个疑问:五边形是由五条线段围成的,四边形是由四条线段围成的,三角形是由三条线段围成的,那么六边形是由几条线段围成的?七边形呢?八边形呢? 得出结论:几边形就是由几条线段围成的图形。

  三、运用发展,巩固新知。

  口答:说出下列图形的名称。(出示课件)

  四、学生用牙签、橡皮泥动手拼搭认识的图形。

  (1)作品展示并介绍自己拼搭的图形是由几条线段围成的。

  (2)你能写出它们各自的名称吗?完成书上题2。

《四边形》教案6

  【知识目标】

  1、掌握平行四边形有关概念;

  2、在动手操作实践的过程中,探索并掌握平行四边形的性质。

  【能力目标】

  1、通过探索与证明平行四边形的性质,发展演绎推理的能力;

  2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想.

  【情感态度与价值观】

  在进行探索的活动过程中发展合作交流的意识.

  【数学核心素养目标】

  1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;

  2、通过对性质的证明,进一步提升逻辑推理的数学核心素养.

  教材

  分析

  重点

  掌握平行四边形的概念与性质

  难点

  对平行四边形性质的探究与证明

  教学方法

  引导类比、鼓励操作、启发推理

  学法指导

  探索发现、猜想证明、迁移应用

  教学过程

  一、引入新课

  PPT呈现:类比是伟大的引路人,转化是智慧的思想家.

  几何学习,是一场充满挑战与惊喜的旅行,老师很荣幸今天能和在座的同学们继续我的平面几何之旅.

  回顾我们学过的平面图形:

  直线、射线、线段角三角形?

  同学们推测一下,接着我们会研究那种平面图形?四边形

  我们就从生活中常见的一类特殊的四边形——平行四边形研究起.

  你能举出一些生活中常见的平行四边形实例吗?

  地砖、推拉门、活动衣架、窗格……

  二、实践探究

  1、平行四边形的相关概念

  平行四边形的定义:两组对边分别平行的四边形,叫做平行四边形.

  D

  C

  A

  B

  如图:

  学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形.

  平行四边形的符号表示:ABCD,读作“平行四边形ABCD”

  (注意表示时,四个顶点A、B、C、D的书写顺序只能按顺时针方向或逆时针方向)

  边、对边、邻边;角、对角、邻角

  对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线.

  ABCD的对角线有两条:AC、BD

  2、平行四边形是中心对称图形

  活动:利用平行四边形纸片探索平行四边形的性质

  活动方式:同桌或四人小组合作、讨论交流.

  教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚.

  平行四边形是中心对称图形,两条对角线的交点是它的对称中心.

  3、平行四边形的性质

  性质1:平行四边形的对边相等.

  已知:如图,四边形ABCD是平行四边形.

  因为四边形ABCD是平行四边形

  所以∠A=∠C,∠B=∠D

  求证:AB=CD,BC=DA.

  证明:连接AC

  因为四边形ABCD是平行四边形

  所以AB∥CD,BC∥DA(平行四边形的定义)

  所以∠1=∠2,∠3=∠4

  在△ABC与△CDA中:

  所以(ASA)

  所以AB=CD,BC=DA

  几何语言:

  因为四边形ABCD是平行四边形

  所以AB=CD,BC=DA

  性质2:平行四边形的对角相等.

  几何语言:

  因为四边形ABCD是平行四边形

  所以∠A=∠C,∠B=∠D

  三、应用迁移

  【例题探究,夯实基础】

  例:已知:如图,在□ABCD中,E,F是对角线AC上的两点,并且AE=CF。

  求证:

  证明:因为四边形ABCD是平行四边形

  所以AB=CD(平行四边形的对边相等)

  AB∥CD(平行四边形的定义)

  所以∠BAE=∠DCF

  在12鈭咥BE/与12鈭咰DF/中:

  因为

  所以(SAS)

  所以BE=DF

  【例题变式,灵活思维】

  变式1:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且AE∥DF。

  求证:

  变式2:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且BE平分∠ABC,DF平分∠ADC.

  求证:

  变式1图变式2图

  【接龙练习,巩固迁移】

  1、如图,四边形ABCD是平行四边形,

  若∠A=130°,则∠B=______,∠C=______,∠D=______;

  若AB=4,AD=5,则BC=__________,CD=________。

  第1题图第2题图

  2、如图,在平面直角坐标系中,□ABCD的三个顶点为A(0,0)、B(4,0)、D(1,2),则顶点C的坐标是_____________。

  3、小强用30米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是10米,则与这条边相邻的边的长度是________米.

  4、如图,在□ABCD中,若BE平分∠ABC,则ED=.

  5、如图,在□ABCD中,AM平分∠BAD,BM平分∠ABC,∠AMB____。

  第4题图第5题图

  【游戏设计,拓展提升】

  四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?

  解:如图,第四位同学可以站在P、Q、M这三个位置.

  四、本课总结

  知识:平行四边形的概念与性质

  探究方法与思想:类比探究,转化思想

  五、作业布置

  必做题:课本P1372、3、4题.

  选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中.

  设计意图

  提醒并渗透“类比的方法、转化的思想”.

  提醒学生本节课是几何探究课程.

  本节课是《平行四边形》这一章的章起始课,促使学生对平面图形的学习进行系统性的认识.

  小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身.

  突出学生课堂主体的地位,加深对平行四边形定义的认识.

  突出重点:

  1、学生通过观察、动手操作,经历平行四边形性质的探索和发现过程,发展合作交流的意识,提升探究能力;

  2、在动手操作额过程中,发现并验证了平行四边形是中心对称图形;

  3、使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想.

  突破难点:

  1、学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的几何证明,提升学生的推理论证能力.

  2、转化思想:将四边形问题转化为三角形问题来研究.

  1、引导学生探索并展示多种证明方法.

  2、激励学生分析、解决问题的热情,进一步提升推理论证的能力.

  本例是对所学的平行四边形性质定理的简单应用。教学时让学生先独立思考,再组织学生进行交流。鼓励学生充分表达他们寻求证明思路的过程。

  这两个问题是对例题条件进行变化,结论不变,以促进学生对平行四边形性质的熟练掌握与灵活运用.

  1、这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想.

  2、第4题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;

  3、第5题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形.

  (此问题根据实际授课情况,可删减)

  1、游戏情境,激发学生兴趣;

  2、此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;

  1、作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”.

  2、选做部分为了促进学生养成分类梳理数学问题的习惯.

《四边形》教案7

  教学目标

  1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.

  2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.

  教学重点

  掌握平行四边形的意义及特征.

  教学难点

  理解平行四边形与长方形、正方形的关系.

  教学过程

  一、复习准备.

  我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

  在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.

  教师提问:我们学过哪些四边形呢?

  学生举例.

  说说哪些物体表面是平行四边形?

  教师出示下图,让学生初步感知平行四边形.

  二、学习新课.

  1.理解平行四边形的意义.

  首先出示一组图形.

  教师提问:这些图形是什么形?它们有什么特征?

  (1)看到这个名称你能想到什么?(板书:平行、四边形)

  教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

  (2)动手测量.

  指名到黑板上用三角板检验一下,每个图形的对边怎样.

  (3)抽象概括.

  根据你测量的结果,能说说什么叫平行四边形吗?

  小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)

  教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.

  (4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

  2.平行四边形的特征和特性.

  (1)教师演示.

  教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.

  (2)动手操作.

  学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.

  (3)归纳平行四边形特性.

  根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)

  (4)对比.

  三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.

  这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?

  (如汽车间的保护网,推拉门、放缩尺等.)

  3.学习平行四形的底和高.

  (1)认识平行四边形的底和高.

  教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.

  (2)找出相应的底和高.【继续演示课件“平行四边形”】

  引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

  使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

  (3)画平行四边形的高.【继续演示课件“平行四边形”】

  教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.

  ①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)

  引导学生比较长方形和平行四边形的异同点,使学生明确:

  相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.

  ②引导学生比较正方形和平行四边形的相同点和不同点.

  使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.

  ③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

  三、巩固练习.【继续演示课件“平行四边形”】

  1.判断下列图形哪些是平行四边形?

  2.指出平行四边形的底,并画出相应的高.

  3.在钉子板上围出不同的平行四边形.

  4.数一数下图中有( )个平行四边形.

  四、教师小结.

  1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

  2.组织学生对所学知识提出质疑,并解疑.

  3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)

  五、布置作业.

  1.用一套七巧板拼出不同的平行四边形.

  2.在下面每个平行四边形中分别画出两条不同的高。

《四边形》教案8

  教学目标:

  1、在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

  2、在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、感受图形与生活的联系,感受平面图形的学习价值,进一步发展对空间与图形的学习兴趣。

  教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。

  教学难点:引导学生发现平行四边形的特征。

  教学准备:实物投影。

  教学过程:

  一、创设情境、导入新课。

  1、出示长方形,谈话:老师手里问成的是什么图形?

  学生:长方形

  教师移动成平行四边形,谈话:仔细看,现在围成的是什么图形?

  学生:平行四边形

  揭题:今天我们进一步认识平行四边形(揭题)

  [从学生熟悉的长方形渐变成平行四边形,既关注学生的原认知,又符合学生的认知规律,同时为后面发现平行四边形边的特点和比较长方形、平行四边形的异同点提供了铺垫]

  2、教师谈话:同学们在生活中见到过平行四边形吗?

  生1:我们校门口的移动门上有平行四边形;

  生2:一种衣架是平行四边形;

  生3:我家晒衣服的伸向外面的栏杆是平行四边形的;

  生4:看,墙上那个图上有平行四边形;

  谈话:只要你善于观察生活,其实生活中经常能看到平行四边形。出示挂图(电动移门、楼梯扶栏、篱笆),你能从中找出平行四边形吗?

  学生上台指。

  [通过让学生在生活实践中找平行四边形,比划出平行四边形的样子,挖掘学生对平行四边形的潜在表象认识,建立初步的感性表象。]

  二、实践操作、探究特点。

  1、谈话:同学们都认识了平行四边形,闭上眼睛在小脑袋里想一想平形四边形是什么样子的?好,脑子里有平行四边形样子了吗?如果老师让你做一个平行四边形,你准备怎么做?

  学生思考。

  2、学生用手头材料做,做完后交流:我是怎么做平行四边形的?教师巡视指导。

  3、谈话:谁愿意上台来展示自己是怎么做的?

  生1:我用钉子板围;

  生2:我用小棒摆的;

  生3:我用方格图上画;

  生4:我是直接折的;

  生5:我是用剪刀剪的;

  4、谈话:同学们想出的办法真多,请同学们观察一下自己面前的平行四边形,它的边有什么共同特点呢?

  小组交流:有什么发现?

  5、交流汇报:

  生1:我们小组觉得上下两条边可能平行;左右两条边可能平行。 (师板书:互相平行)

  师:你是怎么发现的?

  生1:我是看出来的,上下两条边延长后不相交;

  师:其他小组发现这个特点了吗?你有办法证明吗?

  生2:我们的平行四边形上下两条边延长后也不相交,我可以用画平行线方法证明,左右也一样;

  师明确:上下两条边称为一组对边,左右一组对边,可以称两组对边。(板书:两组对边)

  生3:我们可以用三角尺平移的办法证明对边是平行的。

  小组讨论后提问并板书:两组对边互相平行。

  生3:我们小组发现两组对边都是相等的?

  师:你们听明白他的意思了吗?

  生4:就是上下两条边相等,左右两条边相等。

  师规范语言:你指的是两组对边分别相等,是吗?(板书)

  谈话:其他小组发现这个特点了吗?你有办法证明吗?

  生5:上下两个小棒长度相等,左右长度也相等;

  生6:我上下拉出的都是3格,左右是2格,都是相等;

  小结:通过以上研究,我们已经知道了平行四边形的特点:两组对边分别平行且相等。

  5、教师在钉子板上围想想做做1,判断:哪些图形是平行四边形,为什么。

  生1:1、3、4是平行四边形,因为他们符合平行四边形特点两组对边分别平行且 相等。

  生2:2不是,因为它上下对边平行不相等,左右对边相等又不平行,所以不是平行四边形。

  生3:2是梯形,所以不是平行四边形。

  [学生经历制作平行四边形的过程,讨论、探究、发现平行四边形边的特点,学生交流自己的验证方法,并用发现的特点去判断图形是否平行四边形。经历制做研究发现应用的过程,符合学生的认识规律。]

  三、认识高、底。

  1、谈话:出示一张平行四边形的图,介绍:这是一个平行四边形,上下对边是一组平行线,你能量出两条平行线之间的距离吗?应该怎么量?把你量的线段画出来。

  学生自己尝试后交流。教师指导明确平行线之间的垂直线段就是平行线之间的距离。

  2、老师刚才发现,大家画的垂直线段位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

  老师示范画一组的垂直线段,说明:在平行四边形里,一组对边之间的垂直线段就是平行四边形的高,而对边就是底。

  3、学生自主看书上P44页,说一说:什么是平行四边形的高?什么是底?

  [由复习平行线之间距离入手,让学生动手量、画,然后明确平形四边形高、底的含义,注重链接知识的最近发展区,符合学生的认知规律]

  4、师出示实物平行四边形,指一指两组底边上的高。

  5、找出底边上的高:(图略)

  6、做书上试一试,量出底和高分别是多少?

  (1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。

  7、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角 标记。如果有错误,让学生说说错在哪里。

  [平行四边形的高、底的认识是本课教学的难点,通过量平行线间的距离,使学生逐步认识平行四边形的高和底。在扎实认识了高和底的基础上,让学生经历指高、找高、量高、画高的过程,并通过变式,加深对知识点的掌握。]

  四、练习提高。

  1、谈话:课一开始,老师将长方形一拉变成平行四边形,现在老师再轻轻一移又变成了长方形,同学们观察一下,长方形和平行四边形哪里变了,哪里没变,讨论一下它们有什么相同点和不同点呢?

  学生小组交流,集体汇报。

  生1:相同点是它们的对边都是平行且相等;

  生2 :不同点是长方形的角都是直角,而平行四边形的角不是直角;

  生3:平行四边形是长方形变形后产生的;

  2、教师:平行四边形不改变边长的情况下可以改变成不同形状的平行四边形,这就是平行四边形的不稳定性。请同学看书上P45页你知道吗?

  提问:说一说,生活中平行四边形的这种特点在哪些地方有应用?

  生1:有种可以弹的那种拳击套;

  生2:晒衣服的衣架;

  生3:捕鱼的网;

  五、实践游戏:

  1、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

  2、想想做做3,用七巧板中的3块拼成一个平行四边形。

  出示,你能移动其中的一块将它改拼成长方形吗?

  3、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从 哪里锯开呢?找一张平行四边形纸试一试。

  [练习设计既富有情趣,又让学生在活动中体验到所学平行四边形知识的价值,再次感悟到数学知识与现实生活的密切联系。]

  六、全课小结

  今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究的?

  [小结简明扼要,既突出本节课的知识重点,又提升了学生的认知策略。]

  教学反思:

  一、 激发原认知关注学生知识储备。

  用发展的眼光来设计学习活动,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有深远的意义和影响,学生的观察、猜想、探索和创新等其他各方面能力都能得到有效地开发和锻炼。纸上得来终觉浅。在体验中自身感悟的东西理解深刻、印象久远。对平行四边形的特征研究,我本着让学生亲历知识的形成过程的方法,让学生依据探究内容自己有序探究,自己量一量、比一比、想一想,从而得出平行四边形的特征,学生自然也得到了有效地学习。

  二、重视过程把探究机会让给学生。

  《课标》在基本理念中指出:数学教学活动,必须建立在学生的认知发展水平和已有的知识经验基础上,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识。本课正是实践这种理念的一个典范,如我在教学中提供长短不一的塑料棒和钉字板,让学生根据印象中的平行四边形制作平行四边形,自主选择学具围成各种各样的平行四边形,其间学生既能采用最简单的4根塑料棒来围成,还有用钉字板围。操作的成功不但让学生对平行四边形原有认知表现外显,更让学生为下面进一步观察平行四边形边特点提供了素材,最重要的是提升学生灵活应用数学解决实际问题的策略与能力,并从中得到成功的体验,树立学习的信心。

《四边形》教案9

  教学目标

  1.通过生活情景与实践操作,直观认识平行四边形。

  2.在观察与比较中,使学生在头脑里建成长方形与四边形间的区别与联系。

  3.体会平行四边形与生活的密切联系。

  教学重难点

  通过生活情景与实践操作,直观认识平行四边形。

  教学准备

  教具:活动长方形框架点子图。

  学具:七巧板。课时

  安排1

  教学过程

  一、利用学具逐步探究

  1.拉一拉

  发给每位学生一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么变化?

  生动手操作,交流自己的发现。学生会发现长方形向一边倾斜了,角的大小发生了变化等等。程度较好的学生会说出长方形变成了平行四边形。

  教师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形

  长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里讨论。

  (1)小组观察、讨论。教师到各个小组中指导,引导他们从边和角两个方面探究。

  (2)分组汇报,小组之间互相补充。得出:平行四边形和长方形一样,都有四条边,四个角,对边相等。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。

  (设计意图:让学生亲自动手操作,经历将长方形拉成平行四边形的过程。在学生初步感知平行四边的基础上,探索平行四边形与长方形的联系和区别,帮助学生建立平行四边形的模型。)

  2.猜一猜:[课件出示如果这些图形都是可活动的,估计哪些能拉成平行四边形,哪些不能拉成平行四边形,为什么?

  让学生安安静静的思考后,交流看法。平行四边形有四条边,所以三角形和五边形不能拉成。普通四边形的对边不相等,也不能拉成。正方形能拉成特殊的平行四边形:菱形。长方形可以拉成平行四边形。

  请在导入时得到学具奖励的学生上台利用学具拉一拉,验证大家的猜测)

  3.认一认:

  让学生判断大屏幕上的图形是平形四边形吗?[课件出示]

  学生逐一回答。教师随即追问为什么第三、第五个图形不是平形四边形?)

  4.找一找:

  给出一幅画,让学生从这幅画中找到平行四边形

  课件出示画面:在小花园里,有菱形的瓷砖、伸缩们、回廊……图中蕴含着各种各样的平行四边形。学生汇报后,让他们数一数中有几个平行四边形。

  师:除此之外,你还能从生活中找到它吗?

  二、动手操作拓展延伸:

  1.画一画:

  (1)生利用尺子、铅笔在点子图上画平形四边形。画好后,在小组里互相交流。

  (2)利用展台展示学生作品。如果出现错误,让学生当“小老师”互相纠正。

  2.拼一拼:

  用七巧板拼成一个平行四边形,同桌两人一组,比一比,哪个组拼的方法最巧妙。

  (1)请三组同桌在黑板上拼,其余学生分组在下面拼。教师巡视,发现巧妙的拼法,让其展示在黑板上。

  (2)选择一个你最喜欢的平行四边形,说一说它是用什么形状的七巧板拼成的。

  三、课堂

  1.这节课你有什么收获?

  2.师:只要注意积累,你们的知识会越来越多!

《四边形》教案10

  1、知识与技能目标:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。

  2、过程与方法目标:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。

  3、情感、态度与价值观目标:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。

  教学重点:认识三角形的基本特征,认识三角形的底和高。

  教学难点:懂得底和高的对应关系,会画三角形指定边上的高。

  教学准备:小棒、三角板、导学案、多媒体课件等。

  教学过程:

  一、联想揭题

  师:刚才,看到有一个家,你会想到什么?

  生:房子

  师:(课前在黑板上画好一幅房子示意图)

  下面请同学看黑板,板上有一幅房子图,从图中你可以想到我们学过的什么图形?

  生1-2-3:三角形、长方形--

  师:根据我们已学的知识,你能在推理的基础上,说一说,这节课我们学习什么?

  生:三角形

  师:真棒!这节课我们就一起走进三角形的世界!(板书三角形)

  二、探究新知

  (一)认识三角形

  1、想一想(联想)

  师:看到“三角形”,你想到了什么?

  生:

  2、说一说(举例)

  师:从房子图上,我们找到了三角形,想想生活中的场景、结合平时观察,你能从什么地方的图上找出三角形?

  生:自行车上、电线杆上----

  师:(出示图片)我也在课前找了一些图片,请大家一起来看一看

  3、做一做(操作)

  师:数学来源于生活。平时观察中,我们能发现三角形,你能创造出三角形吗?

  生:能

  师:(课前准备:3根小棒、方格纸、一副三角尺)

  学生活动:

  请你们拿出课前自己准备好的小棒,每人做一个三角形。

  (请一个学生上前面摆)

  师:你们是这样摆的吗?

  生:是的

  4、画一画

  师:好,请同学们在纸上画出一个三角形。同时思考什么样的图形是三角形。

  (学生画三角形,请一生上黑板画一个三角形)

  师:表扬,画好的同学有

  师:请同学生们观察我们摆出和画出的三角形,联系生活的图形说一说什么样的图叫三角形?

  生1-2-3-4-

  师:这就是三角形的定义:板书

  师:我们知道有三条线段首尾连接的叫三角形。让你给它各部分起个名称分别叫什么呢?

  生:

  师:(显示PPT三角形名称)(板书3个顶点、3条边、三个角)

  教师:板书)如果在三角形的三个顶点上分别写上三个不同的大写字母,如:A、B、C,那么这个三角形就是“三角形ABC”,也可以称为“三角形ACB”或“三角形BAC”等。

  教师:再说说,三角形ABC的3条边、3个角、3个顶点分别是什么?3条边:AB、AC、BC;3个顶点:A、B、C;3个角:∠A、∠B、∠C。

  五、判断三角形

  师:同学们对三角形认识了,我们一起来看看下面的图形哪个是三角形?

  (PPT)

  六、画图

  师:大家对三角形的基础知识掌握得很好,下面请同学们在导学案方格上任连三个点画出三角形。

  学生操作

  师:(讲解)你是如何画的?

  生1-2-3--

  提问:观察图形,你有什么发现?

  引导学生发现:不在同一条直线上的三个点都能画出一个三角形。

  师:有没有同学连在一条线上的三个点?你们为什么不连?

  过渡:请大家用笔将这四个点都连起来,想象一下,现在这连好的图形像我们屋顶的~生:梁

  (二)、三角形的高

  1、引出高的定义

  师:(PPT)出示人字梁这些线段中,哪一根最特殊?

  生:中间的一根

  师:为什么?

  生:

  师:(揭示高的定义)在数学上,人们把:从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高,(板书:画出三角形的高,标上直角标记,并在所画线段的旁边标出“高”字)这条对边是三角形的底。(板书:底)

  (黑板)随之板书)强调:高要用虚线表示,并标上垂直符号。

  PPT视频画高

  2、教学确定底画高

  师:通过观看,闭上眼睛联想一下,画高就和我们以前学的画什么差不多?

  生:画垂线

  师:现在,你们一定能画出三角形指定的高,请你画一画(完成导学案中的第4题)

  叫学生上黑板画一画学生作高,师指导。

  展示学生作业

  让学生说说如何作高的。

  3、摆三角形的高

  师:在摆的三角形上摆出它的高。你有什么发现

  4、画出下面三角形各边对应的高。

  学生动手

  三、巩固练习

  完成书第76页练一练

  讲解

  四、总结拓展

  1、欣赏三角形元素的图片、设计理念、三角形文化运用等

  2、画直角三角形、钝角三角形高

《四边形》教案11

  教学要求:

  1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。

  2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。

  3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。

  教学重点:

  在制作中发现平行四边形的基本特征。

  教学难点:

  引导学生发现平行四边形的特征。

  教学过程:

  一、生活引入

  1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。

  2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)

  3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)

  二、操作探究

  1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。

  2.师:谁来汇报?你选了那种材料?是怎么制作的?(让学生依次在投影上演示,并介绍制作过程)

  3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?

  4.下面,请每个小组的同学根据老师的提示进行讨论。

  小组活动:

  (1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。

  (2)用什么方法去验证你们的猜想?怎样操作?

  (3)通过观察,操作,验证,你们的结论是什么?

  5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)

  6.师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。

  7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。

  三、探索平行四边形与长方形的相同点与不同点。

  1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。

  2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?

  3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?

  四、小结,并认识平行四边形的不稳定性。

  1.通过这节课的学习,你对平行四边形有哪些认识?

  2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。

《四边形》教案12

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

  学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

  并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

《四边形》教案13

  一、教学目标:

  1.使学生掌握平行四边形的意义及特征,了解它的特性。

  2.通过观察、动手,培养学生抽象概括能力和初步的空间观念。

  3.渗透事物是相互联系的辩证唯物主义观点。培养学生观察和认识周围图形的兴趣和认识。

  二、教学重点:平行四边形的意义。

  三、教学难点:抽象概括平行四边形的意义。

  四、教学过程:

  (一)、老师出示一个长方形框架.

  1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?

  (这个图形不是长方形了,因为它的四个角不是直角)

  我们把这样的图形叫做平行四边形.在黑板右上角贴出一个平行四边形.

  2.请同学们观察:黑板上还有哪些平行四边形?

  (分类中的“其它四边形”都是平行四边形)老师把黑板上的“其它四边形”改写成“平行四边形”)

  问:同学们平时见过平行四边形吗?请举例来说.(有一种防盗网上的图形、篱笆上的图形,有的编织图案)

  3.平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)

  (它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)

  今天,我们又认识了一个图形——平行四边形.

  (二)通过活动,再次感知平行四边形。

  1. 小朋友看过魔术表演吗?咱们来变个魔术,请打开1号纸袋。看一看,里面有什么?(6根硬纸条,4个图钉)

  师:咱们要围一个长方形框,得用几根硬纸条?4根什么样的硬纸条?请小组的同学讨论选出来。

  学生讨论筛选后,教师提问:你们选了什么样的?为什么这样选?

  最后小组合作用图钉固定出长方形框。

  围好后,请小朋友推一推,拉一拉,看图形变了没有?(学生操作)

  在日常生活中我们经常见到这种图形。请看屏幕。(课件显示“纺织图案”、“楼梯扶手”、“篱笆”,并闪动其中的几何图形再抽象出来。)

  2. 学生自己发现平行四边形与长方形、正方形的共同点。观察后交流。

  3. 分组操作、研究平行四边形的特征。

  (1)回忆研究长方形、正方形特点的方法。(量一量、折一折、比一比)

  (2)打开2号纸袋(里面有两张平行四边形纸片),用刚才的方法,也可以想别的办法,也可以观察变平行四边形框的过程,小组讨论平行四边形4条边和 4个角的特点。

  (3)分组交流,教师小结。

  4. 辨认平行四边形。

  完成课本练习三十九第2题,指生订正并说出理由。

  (三)巩固练习

  1、判断题:

  (1)长方形、正方形和平行四边形都是四边形.( )

  (2)四个角都是直角的四边形一定是正方形.( )

  (3)一个四边形,它的四条边相等,这个四边形一定是正方形.( )

  (4)对边相等的四边形都是长方形.( )

  (5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形.( )

  2.思考题:

  有两个大小一样的长方形,长都是4分米,宽都是2分米.

  (1)把这两个长方形拼成一个正方形,你是怎样拼的?

  (2)把这两个长方形拼成一个大的长方形,它的长是多少?宽是多少?你是怎样拼的?

  (四)全课总结

  通过今天的学习你有什么收获?谈一谈。

  教学反思:

  在整节课的设计中,我注重将游戏、活动引入教学。如在导入新课时,创设问题情境,利用教具有熟悉的长方形一拉动变成了要学的内容平行四边形,既复习了旧知识长方形,又很自然地过渡到新知识,使学生体会到数学知识都有内在联系。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。

  在教学设计中,我注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的空章。然后通过学生的动手操作,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。通过"变魔术"引出平行四边形,激发了学生的观察兴趣,从而使学生认识平行四边形的特性,在轻松学习中学习数学。

  教学中感到不足的是设计的练习不很多,题的类型不够新颖,在练习的设计中,应能引起学生的兴趣,使学生乐于探究。

  教学反思:

  学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、验证、推理与交流等数学活动。因此,本节课我让学生把自己制作的长方形框架拿出来拉动后可以得到一个平行四边形引入新课,激起探究的兴趣。在探究平行四边形的特征时,引导学生小组讨论:一个平行四边形和一个三角形的框架,比较一下,它们之间有什么不同。再引导学生观察平行四边形,归纳、概括平行四边形的特征。让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。当学生通过动手动脑,在探索中初步发现平行四边形的特征。学生学得非常积极主动:数学教学活动要帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学思想和方法,因此在数平行四边形时,引导学生有序地进行观察,主动探究规律,渗透有序思维的方法。整节课从实际出发运用现代教学手段,突破了教学的难点。反思整个教学过程,我认为教学的益处在于有效地引导了学生在活动中享受到学习的乐趣,体验到合作、交流的成功,从而大大提高了教学效果。 不足:课中的练习量还是不够,可以多做些练习突出平行四边形的特征。

《四边形》教案14

  教学目标

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

《四边形》教案15

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  【教学目标】

  1、通过操作和讨论掌握平行四边形和梯形的特征。

  2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

  3、注意培养学生的空间观念和想像力。

  【教学重点】

  通过操作和讨论掌握平行四边形和梯形的特征。

  【教学难点】

  了解平行四边形与长方形和正方形的关系。

  【教学准备】

  教师准备:直尺,三角板,课件。

  学生准备:直尺,三角板,白纸,铅笔。

  【教学过程】

  一、通过观察,加深学生对四边形特点的了解。

  1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

  (1) (2) (3)

  (4) (5) (6)

  师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

  生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

  师:你知识三角形和四边形有什么特点吗?

  生1:三角形有三条边,三个角。

  生2:四边形有四条边,四个角。

  师:对,今天我们来学习两种特殊的四边形。

  [设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]

  二、通过观察讨论,让学生发现平行四边形和梯形的特点。

  1、通过让学生观察讨论,认识平行四边形和长方形的定义。

  出示课件:在电脑上出示一组四边形。

  (1) (2) (3)

  (4) (5) (6)

  师:电脑上的这组图形都是什么图形?

  生:四边形。(有前面的知识作铺垫,学生很容易回答出来)

  师:你能把它们分类吗?

  生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)

  生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

  师:你能说说把图(1)、(3)、(6)分为一组道理吗?

  生1:因为图(1)、(3)、(6)有两组平行线。

  师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)

  生:确实有两组平行线。

  师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)

  师:谁能说说把图(2)、(4)、(5)分为一组的道理?

  生2:它们只有一组平行线。

  师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)

  2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

  师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?

  生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

  生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

  生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,

  师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

  师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

  师:你们能说说长方形和正方形特殊的地方吗?

  生:它的四个角都是直角。

  师:对,这说是平行四边形特殊的地方。

  (通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)

  3、进一步认识平行四边形和梯形的特点。

  师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)

  生1:我发现平行四边形对边是相等的。

  师:请同学们用尺子量一量。

  生2:我发现平行四边形的对角相等。

  师:请同学们用量角器量一量。

  师:这两位同学的发现正确吗?

  生:完全正确。

  师:梯形有这些特点吗?请同学们量一量。

  生:没有,梯形的对边不相等,对角也不相等。

  (通过学生的操作,进一点了解平行四边形和梯形的特点)

  师:下面我们可以用图表表示平行四边形和梯形的特点。

  图形对边平行对边对角

  平行四边形有两组对边平行相等相等

  梯形只有一组对边平行不相等不相等

  (用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)

  三、认识四边形之间的关系。

  师:同学们,平行四边形和梯形是不是四边形?

  生:是。

  师:我们可以用这个图来表示:

  平行四边形

  梯形

  四边形

  师:长方形和正方形应怎样表示呢?

  生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

  师:对,应这样表示:

  平行四边形

  长方形 梯形

  正方形

  四边形

  四、巩固练习。

  1判断下面那些图形的平行四边形,那些图形的梯形。

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (7)

  (使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)

  2填空。

  1、两组对边( )的四边形叫做平行四边形。

  2、( )的四边形叫做梯形。

  3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。

  4、平行四边形和梯形都是( )形,它们都有( ),( )个角。

  (通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)

  五、全课小结。

  师:今天你们学到了什么?

  生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

  [设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]

【《四边形》教案15篇】相关文章:

1.《四边形》教案

2.四边形教案

3.《四边形》教案

4.《认识四边形》教案

5.四边形复习教案

6.四边形周长的教案

7.四边形性质探索的教案

8.第三单元 四边形教案

上一篇:圆的标准方程教案 下一篇:《短文》优秀教案