初一数学教案《正数和负数》

2021-06-11 教案

  一、 教学目标

  1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

  2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

  3、 学会用正负数表示实际问题中具有相反意义的量。

  二、 教学重点和难点

  重点:正负数的概念

  难点:负数的概念

  三、 教具

  投影片、实物投影仪

  四、 教学内容

  (一 )引入

  师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

  生:自然数

  师:为了表示“没有”,又引入了一个什么数?

  生:自然数0

  师:当测量和计算的结果不是整数时,又引进了什么数?

  生:分数(小数)

  师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

  请学生用数表示这些量,遭遇表示困难。

  师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

  (二)新课教学

  1、 相反意义的量

  师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

  (1) 汽车向东行驶2.5千米和向西行驶1.5千米;

  (2) 气温从零上6摄氏度下降到零下6摄氏度;

  (3) 风筝上升10米或下降5米。

  引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

  请学生举出一些相反意义的量的实例。

  教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

  2、 正数与负数

  师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

  由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

  师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

  生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

  师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

  生:(讨论后得出)不能。

  师:(以温度计为例)温度计中的.0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

  (三)、练习

  1、 学生完成课本第4页练习1,2,3

  2、 补充练习

  (1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

  (2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

  (3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

  (四)小结

  1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

  2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

  3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

  (五)作业

  见作业1.1节作业。

【初一数学教案《正数和负数》】相关文章:

正数和负数数学教案09-07

人教版初一数学教案正数和负数03-21

初一数学教案正数与负数08-08

《正数和负数》的说课稿05-21

《正数和负数》说课稿08-20

《正数和负数》说课稿03-21

正数和负数的课件03-19

正数和负数的说课稿05-03

教案:正数和负数09-07