数学几何证明选讲教案

2024-06-27

数学几何证明选讲教案

  考试要求重难点击命题展望

  1.了解平行线截割定理.

  2.会证明并应用直角三角形射影定理.

  3.会证明并应用圆周角定理,圆的切线的判定定理及性质定理,并会运用它们进行计算与证明.

  4.会证明并应用相交弦定理、圆内接四 边形的性质定理与判定定理、切割线定理,并会运用它们进行几何计算与证明.

  5.了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证明平面与圆柱面的截线是椭圆(特殊情形是圆).

  6.了解下面的定理.

  定理:在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l的交角为β(π与l平行,记β=0),则:

  ①β>α,平面π与圆锥的交线为椭圆;

  ②β=α,平面π与圆锥的交线为抛物线;

  ③β<α,平面π与圆锥的交线为双曲线.

  7.会利用丹迪林(Dandelin)双 球(如图所示,这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为F,E)证明上述定理①的情形:

  当β>α时,平面π与圆锥的交线为椭圆.

  (图中,上、下两球与圆锥面相切的切点分别为点B和点C,线段BC与平面π相交于点A)

  8.会证明以下结果:

  ①在7.中,一个丹迪林球与圆 锥面的交线为一个圆,并与圆锥的底面平行.记这个圆所在的平面为π′.

  ②如果平面π与平面π′的交线为m,在6.①中椭圆上任取点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点 A到直线m的距离比是小于1的常数e(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率).

  9.了解定理6.③中的证明,了解当β无限接近α时,平面π的极限结果. 本章重点:相似三角形的判定与性质,与圆有关的若干定理及其运用,并将其运用到立体几何中.

  本章难点:对平面截圆柱、圆锥所得的曲线为圆、椭圆、双曲线、抛物线的证明途径与方法,它是解立体几何、平面几何知识的综合运用,应较好地把握.

  本专题强调利用演绎推理证明结论,通过推理证明进一步发展学生的逻辑推理能力,进一步提高空间想象能力、几何直观能力和综合运用几何方法解决问题的能力.

  第一讲与第二讲是传统内容,高考中主要考查平行线截割定理、直角三角形射影定理以及与圆有关的性质和判定,考查逻辑推理能力.第三讲内容是新增内容,在新课程高考下,要求很低,只作了解.

  知识网络

  16.1 相似三角形的判定及有关性质

  典例精析

  题型一 相似三角形的判定与性质

  【例1】 如图,已知在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.

  (1)求证:△ABC∽△FCD;

  (2)若S△FCD=5,BC=10,求DE的长.

  【解析】(1)因为DE⊥BC,D是BC的中点,所以EB=EC,所以∠B=∠1.

  又因为AD=AC,所以∠2=∠ACB.所以△ABC∽△FCD.

  (2)过点A作AM⊥BC,垂足为点M.因为△ABC∽△FCD,BC=2CD,所以S△ABCS△FCD=(BCCD)2=4,又因为S△FCD=5,所以S△ABC=20.因为S△ABC=12BC?AM,BC=10,所以20=12×10×AM,所以AM=4.又因为DE∥AM,所以DEAM=BDBM,因为DM=12DC=52,BM=BD+DM,BD=12BC=5,所以DE4=55+52,所以DE=83.

  【变式训练1】如右图,在△ABC中,AB=14 cm,ADBD=59,DE∥BC,CD⊥AB,CD=12 cm.求△ADE的面积和周长.

  【解析】由AB=14 cm,CD=12 cm,CD⊥AB,得S△ABC=84 cm2.

  再由DE∥BC可得△ABC∽△ADE.由S△ADES△ABC=(ADAB)2可求得S△ADE=757 c m2.利用勾股定理求出BC,AC,再由相似三角 形性质可得△ADE的周长为15 cm.

  题型二 探求几何结论

  【例2】如图,在梯形ABCD中,点E,F分别在AB,CD上,EF∥AD,假设EF做上下平行移动.

  (1)若AEEB=12,求证:3EF=BC+2AD;

  (2)若AEEB=23,试判断EF与BC,AD之间的关系,并说明理由;

  (3)请你探究一般结论,即若AEEB=mn,那么你可以得到什么结论?

  【解析】 过点A作AH∥CD分别交EF,BC于点G、H.

  (1)因为AEEB=12,所以AEAB=13,

  又EG∥BH,所以EGBH=AEAB=13,即3EG=BH,

  又EG+GF=EG+AD=EF,从而EF=13(BC-HC)+AD,

  所以EF=13BC+23AD,即3EF=BC+2AD.

  (2)EF与BC,AD的关系式为5EF=2BC+3AD,理由和(1)类似.

  (3)因为AEEB=mn,所以AEAB=mm+n,

  又EG∥BH,所以EGBH=AEAB,即EG=mm+nBH.

  EF=EG+GF=EG+AD=mm+n(BC-AD)+AD,

  所以EF=mm+nBC+nm+nAD,

  即(m+n)EF=mBC+nAD.

  【点拨】 在相似三角形中,平行辅助线是常作的辅助线之一;探求几何结论可按特殊到一般的思路去获取,但结论证明应从特殊情况得到启迪.

  【变式训练2】如右图,正方形ABCD的边长为1,P是CD边上中点,点Q在线段BC上,设BQ=k,是否存在这样的实数k,使得以Q,C,P为顶点的三角形与△ADP相似?若存在,求出k的值;若不存在,请说明理由.

  【解析】设存在满足条件的实数k,

  则在正方形ABCD中,∠D=∠C=90°,

  由Rt△ADP∽Rt△QCP或Rt△ADP∽Rt△PCQ得ADQC=DPCP或ADPC=DPCQ,

  由此解得CQ=1或CQ=14.

  从而k=0或k=34.

  题型三 解决线的位置或数量关系

  【例3】(2009江苏)如图,在四边形ABCD中,△ABC △BAD,求证:AB∥CD.

  【证明】 由△ABC≌△BAD得∠ACB=∠BDA,所以A、B、C、D四点共圆,

  所以∠CAB=∠CDB.

  再由△ABC≌△BAD得∠CAB=∠DBA,

  所以∠DBA=∠CDB,即AB∥CD.

  【变式训练3】如图,AA1与BB1相交于点O,AB∥A1B1且AB=12A1B1,△AOB的外接圆的直径为1,则△A1OB1的外接圆的直径为 .

  【解析】因为AB∥A1B1且AB=12A1B1,所以△AOB∽△A1OB1

  因为两三角形外接圆的直径之比等于相似比.

  所以△A1OB1的外接圆直径为2.

  总结提高

  1.相似三角形的判定与性质这一内容是平面几何知识的重要组成部分,是解题的工具,同时它的内容渗透了等价转化、从一般到特殊、分类讨论等重要的数学思想与方法,在学习时应以它们为指导.相似三角形的证法有:定义法、平行法、判定定理法以及直角三角形的HL法.

  相似三角形的性质主要有对应线的比值相等(边长、高线、中线、周长、内切圆半径等),对应角相等,面积的比等于相似比的平方.

  2.“平行出相似”“平行成比例”,故此章中平行辅助线是常作的辅助线之一,遇到困难时应常考虑此类辅助线.

  

  • 相关推荐

【 数学几何证明选讲教案】相关文章:

关于《我选我》的教案03-19

《我选我》教案反思03-20

小学《图形与几何》教学设计(通用11篇)05-02

银行选部门报告模板03-20

离职报告范选15篇05-31

数学单项式教案10-25

数学教案:圆的认识02-12

数学因真实而精彩教案03-20

认识球体数学教案03-20

苏教版数学分数的教案03-20