数列数学教学反思

2024-03-20

数列数学教学反思

  篇一

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念。

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项。

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题。

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

  教学建议

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。

  ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。

  篇二

  这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

  我将从以下几个方面进行反思:

  (一)对课前备课的反思

  教学反思不仅仅只是针对课堂教学实际的反思,也应该包括对备课、教案进行反思。在备课过程中,教学设计前后共修改了4次,最后形成完整的一节课的设计。为什么反复修改了4次之多,其中有几个很关键的地方值得一提。

  首先,是备学生。我所教的是文科普通班,入班前的数学平均分仅为44分,在第一次测验中平均分还不到60分,学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高。因此在选择教学内容上就考虑到了学生现有的认知水平。

  其次,课程内容的选择。内容是数列的求和是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。等到高三复习时再讲还是在高一阶段就慢慢渗透给学生还是值得商榷的。我认为高中数学的学习应该是螺旋上升的,而不是直线型。在高一阶段学生能够掌握的知识是要渗透给学生,学生经历过的,形成一定的经验,到了高三复习阶段就能唤醒这些经验和记忆。关于数列的求和的方法有很多,常见的如倒序相加法、并项法、拆项法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了并项法和分组求和法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。这样对后继学习裂项相消法、错位相减法做一些铺垫。

  第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

  (二)对课中教学的反思

  这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

  .亮点之处:

  学生创新解答

  在例1求100?99?98?97?96?95??4?3?2?1的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+?+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+?+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。

  在接下来的练习中,教师的设想是学生能够想到将相邻两项合并成一项结果是1,这样很容易就能得到结果。但是高元顺同学并没有在我设想的思路上走,而是给出了一个特别的回答,他的回答是:我是这样认为的,如果这个数列是6项的话,那么第5项是-5,第6项是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6项的和就等于项数的一半。这个数列是100项,那就等于50。S200 就等于100,所以S201 就等于-101。

  他的回答博得听课的老师的一致赞同。他使用的方法通过找规律提出猜想,实际上就是使用了数学思想方法中一个很重要的方法——递推法。

  (2)学生成为课堂的主体,教师要甘当学生的绿叶

  由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例2中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。朱馨同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。

  在这两个例题教学过程中我体会到了学生获得成功的喜悦,这也说明了给学生以思考的时间和空间,学生的回答是不会让老师感到失望了,而是充满了惊喜。

  (3)从容面对课堂中的偶发事件

  在教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是高元顺同学的回答出乎我的意料,这种做法在我预想之外,当时我面带微笑鼓励他说下去,对他的陈述及时做出肯定和鼓励,同事我的脑子在快速的反应怎样总结他的解法,等他陈述完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正2222222222

  奇数的和只差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。

  积极的回答的出来。

  (三)课后反思,再设计

  一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。

  若是再教这部分内容时我应该重新调整一下我的教学顺序,如在复习完公式后,可以先提出1+2+3+?+100=?在此基础上进行变式1-2+3-4?-99+100=?,这样再给出练习1,学生有了经验自然很容易就解决了。在例题2问题中,可以再降低一下难度,因此可以将后面的练习3作为例题。而将原例2作为练习的题目。这样的做更体现了知识的循序渐进和螺旋上升,学生容易理解和接受。

  (四)感受

  上一届的“凤凰杯”让我印象深刻,同时也期盼着也能参加“成长杯”。当李加莉老师宣布由我来参加这届的“成长杯”我感觉我的压力好大了。经过一段时间的精心选题和反复修改教学设计,我终于站在了“成长杯”的讲台了,心情复杂——激动、兴奋、紧张…… 直到下课的铃声想起我的一颗心才算踏实下来。

  东北师范大学的孔凡哲教授曾在给我们讲座时说过:没有精心的预设,就没有精彩的生成。我一直都是深刻记得这句话,也在教学中实践它。但是我仍然感觉自己做不到“精彩”而更多的是“平淡无奇”。是这节课我有了深刻的体会,让我开始审视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音……

  篇三

  等差数列这节我们已经学习完了,回过头清理一下,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求转化为首项和公差来处理;能使用简单的性质;对五个基本量之间的转化比较灵活;课堂展示、质疑气氛活跃。重要的一个原因是数列主要解决是数的问题,求数列的通项实质是寻找一列数所具有的规律,这一部分与学生以前学过的找规律问题类似,因而学起来轻松有兴趣,他们也有对其进行探究的热情,如,学生由定义推导出通项公式 an=a1+(n-1)d , an-am=(n-m)d , 若 m+n=p+q , 则 an+am =ap+aq 等 。 培养了学生的推理论证能力和思维的严谨性。学生解题具有一定的规范性。

  但是也存在着一些不尽人意的地方,学生对题目中的条件不能用在恰当的位置,计算能力有待进一步培养,对证明一个数列是等差数列,受课本例题的影响,过程复杂,写成 an+1-an= an-an-1 , 没有抓住定义的内涵,将问题的形式简单化,写成 an+1-an= 常数,因而在做题时出现 3 an+1-3an=2 , 这样的式子看不出此数列是等差数列。对等差数列前 n 项和的含义的理解不够透彻,导致奇数项和与偶数项和不能正确表达。对求等差数列前 n 项的最值问题,有求和公式求最值比较熟练,但从通项研究最值问题不够熟练。针对以上问题,我们将在后续的等比数列的教学中有意识地进行针对性的训练,力求使学生对重点内容和重要方法熟练掌握。

  • 相关推荐

【数列数学教学反思】相关文章:

数列教学反思三篇05-15

《高考总复习数列求和问题》教学反思07-08

数学等比数列的教案06-02

数学教学反思07-08

数学教学的反思06-10

高三理科数学数列复习教案06-02

数学教学反思总结06-20

数学《统计》的教学反思06-26

生日的数学教学反思06-09