公因数和最大公因数的教案
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
求两个数的公因数和最大公因数。
教学难点:
理解求公因数和最大公因数的方法。
教学准备:
小黑板
教学过程:
一、铺垫准备
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知
1.认识公因数。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2 186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3 184=4......2)
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
- 相关推荐
【公因数和最大公因数的教案】相关文章:
《电和磁》的教案03-04
《开花和结果》教案02-02
教案:多边形内角和与外角和05-25
关于《点和线》的教案03-20
小蚂蚁和蒲公英教案04-19
《伯牙绝弦》教案和反思03-19
精彩极了和糟糕透了的教案03-20
爷爷和小树教案(通用15篇)11-24
藻类、苔藓和蕨类植物的教案12-15
教师怎样备课和编写教案03-15