小学三年级数学思维训练

2022-08-04

  数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面是小编整理的小学三年级数学思维训练汇总,欢迎大家分享。

  小学三年级数学思维训练1

  加减法应用题

  用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。

  应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。

  这一讲主要介绍利用加、减法解答的简单应用题。

  例1小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。小玲家养了多少只鹅?

  解:将已知条件表示为下图:

  表示为算式是:24+?=46+5。由此可求得养鹅(46+5)-24=27(只)。

  答:养鹅27只。

  若例1中鸡和鹅的总数比鸭少5只(其它不变),则已知条件可表示为下图,

  表示为算式是:24+?+5=46。由此可求得养鹅46-5-24=17(只)。

  例2一个筐里装着52个苹果,另一个筐里装着一些梨。如果从梨筐里取走18个梨,那么梨就比苹果少12个。原来梨筐里有多少个梨?

  分析:根据已知条件,将各种数量关系表示为下图。

  有几种思考方法:

  (1)根据取走18个梨后,梨比苹果少12个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。

  (2)根据取走18个梨后梨比苹果少12个,我们设想“少取12个”梨,则现有的梨和苹果一样多,都是52个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。

  (3)根据取走18个梨后梨比苹果少12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。

  这样一来,现有苹果就比原来的梨多了12个(见下图)。由此可求出原有梨(52+18)-12=58(个)。

  由上面三种不同角度的分析,得到如下三种解法。

  解法1:(52-12)+18=58(个)。

  解法2:52+(18-12)=58(个)。

  解法3:(52+18)-12=58(个)。

  答:原来梨筐中有58个梨。

  例3某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。又知巧克力糖的块数恰好是小白兔软糖块数的2倍。三年级一班共买了多少块糖果?

  分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。先求出哪一种糖的块数最简便呢?我们先把已知条件表示为下图。

  由上图可求出,

  小白兔软糖块数=15+28=43(块),

  水果糖块数=43+15=58(块),

  巧克力糖块数=43×2=86(块)。

  糖果总数=43+58+86=187(块)。

  答:共买了187块糖果。

  例4一口枯井深230厘米,一只蜗牛要从井底爬到井口处。它每天白天向上爬110厘米,而夜晚却要向下滑70厘米。这只蜗牛哪一个白天才能爬出井口?

  分析与解:因蜗牛最后一个白天要向上爬110厘米,井深230厘米减去这110厘米后(等于120厘米),就是蜗牛前几天一共要向上爬的路程。因为蜗牛白天向上爬110厘米,而夜晚又向下滑70厘米,所以它每天向上爬110-70=40(厘米)。

  由于120÷40=3,所以,120厘米是蜗牛前3天一共爬的。故第4个白天蜗牛才能爬到井口。

  若将例4中枯井深改为240厘米,其它数字不变,这只蜗牛在哪个白天才能爬出井口?(第5个白天)

  练习:

  1.甲、乙、丙三人原各有桃子若干个。甲给乙2个,乙给丙3个,丙又给甲5个后,三人都有桃子9个。甲、乙、丙三人原来各有桃子多少个?

  2.三座桥,第一座长287米,第二座比第一座长85米,第三座比第一座与第二座的`总长短142米。第三座桥长多少米?

  3.(1)幼儿园小班有巧克力糖40块,还有一些奶糖。分给小朋友奶糖24块后,奶糖就比巧克力糖少了10块。原有奶糖多少块?

  (2)幼儿园中班有巧克力糖48块,还有一些奶糖。分给小朋友奶糖26块后,奶糖就只比巧克力糖多18块。原有奶糖多少块?

  4.一桶柴油连桶称重120千克,用去一半柴油后,连桶称还重65千克。这桶里有多少千克柴油?空桶重多少?

  5.一只蜗牛从一个枯水井底面向井口处爬,白天向上爬110厘米,而夜晚向下滑40厘米,第5天白天结束时,蜗牛到达井口处。这个枯水井有多深?若第5天白天爬到井口处,这口井至少有多少厘米深?(厘米以下的长度不计)

  6.在一条直线上,A点在B点的左边20毫米处,C点在D点左边50毫米处,D点在B点右边40毫米处。写出这四点从左到右的次序。

  7.(1)五个不同的数的和为172,这些数中最小的数为32,最大的数可以是多少?

  (2)六个不同的数的和为356,这些数中,最大的是68,最小的数可以是多少?

  小学三年级数学思维训练2

  一、判断题(每道小题3分共12分)

  1.用来量长短的单位有吨、千克、克.()

  2.4个250米是2千米.()

  3.小华身高50千克.()

  4.1米是10个10厘米.()

  二、单选题(每道小题3分共12分)

  1.小张身高[]

  A.140厘米B.140分米C.140毫米

  2.一支铅笔长[]

  A.20厘米B.20分米C.20毫米

  3.一袋大米重[]

  A.25千克B.25克C.25吨

  4.一筐水果约重[]

  A.30克B.30吨C.30千克

  三、填空题(1-8每题2分,9-16每题3分,共40分)

  1.4千克=()克

  2.20分米=()米

  3.45厘米=()毫米

  4.10米=()厘米

  5.800毫米=()厘米

  6.70分米=()厘米

  7.300分=()小时

  8.10千米=()米

  9.47厘米-27厘米=()厘米=()分米

  10.在○里填上<、>或=.

  2吨○2200千克

  11.1吨-40千克=()千克

  12.在○里填上<、>或=.

  3时○300分

  13.在○里填上<、>或=.

  490克○1千克

  14.1米+3分米=()分米

  15.在○里填上<、>或=.

  4米○400厘米

  16.41毫米+159毫米=()毫米=()分米

  四、口算题(10分)

  (1)15×4×3=(4)480÷8÷6=(7)80÷4+6=

  (2)810÷(4+5)=(5)(43-13)×6=(8)120÷6×4=

  (3)100-12×8=(6)60+18×5=(9)(24+16)÷8=

  (10)20+60÷5=

  五、文字叙述题(每道小题5分共10分)

  1.250吨是5吨的.多少倍?

  2.多少分米是36分米的2倍?

  六、应用题(每道小题8分共16分)

  1.在7千米长的公路一侧,每隔4米插一根电杆,一共要分多少段?

  2.小丽从家去公园走了1千米又500米,她来回共走了多少米?

  小学三年级数学思维训练3

  1、有黑、白棋子一堆,黑子个数是白子个数的2倍。现在从这堆棋子中每次取出黑子4个,白子3个,待到若干次后,白子已经取尽,而黑子还有16个。求黑、白棋子各有多少个?(假设思维)

  【分析与解答】

  假设每次取出的黑子不是4个,而是6个(6=3×2),也就是说每次取出的黑子个数也是白子的2倍。由于这堆棋子中黑子个数是白子的2倍,所以,待取到若干次后,黑子、白子应该都取尽。但是实际上当白子取尽时,(留下)黑子还有16个,这是因为实际每次取黑子是4个,和假定每次取黑子6个相比,相差(留下的是)2个。

  由此可知,一共取的次数是:16÷2=8(次)。

  白棋子的个数为:3×8=24(个)。

  黑棋子的个数为24×2=48(个)。

  2、小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得56分。小华答对了几题?(假设思维)

  【分析与解答】

  假设小华全部答对:该得4×20=80(分),现在实际只得了56分,相差80-56=24(分),因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分(4+4=8),根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数:24÷8=3(题),一共做20题,答错3题,答对的应该是:20-3=17(题),4×17=68(分)(答对的应得分),4×3=12(分)(答错的应扣分),68-12=56(分)(实际得分)

  3、一个化肥厂计划在50天内生产一批化肥,从前24天的生产情况看,每天实际生产的化肥没有达到原计划每天产量指标,因此工厂决定停产3天进行整顿。整顿之后,每天比整顿前多生产化肥25吨,结果只用了49天(包括停产整顿所用的3天时间)就完成了原计划50天的生产任务。已知整顿后比整顿前一共多生产化肥400吨,问整顿前后各生产化肥多少吨?(因果关系)

  【分析与解答】

  我们容易算出整顿后生产的天数是:49-24-3=22(天)。由于整顿后每天比整顿前多生产化肥25吨,所以,一共多生产化肥22×25=550(吨)。可题目中却说整顿后比整顿前一共多生产化肥400吨,这岂不是“自相矛盾”吗?

  究竟“矛盾”出在哪里呢?原来,我们刚才算出的“550吨”是整顿后22天比整顿前22天多生产的化肥;而题目中告诉我们的“400吨”是整顿后22天比整顿前24天多生产的化肥。这完全是两码事,所以“550吨”与“400吨”并不矛盾。从上面的比较中,我们看出:“550吨”与“400吨”的差150吨正好是整顿前2天的产量,因此,整顿前每天生产化肥150÷2=75(吨)。从而,75×24=1800(吨)就是整顿前产的化肥;1800+400=2200(吨)就是整顿后产的化肥。

  4、红星机械厂十一月份计划生产一批机器,实际每天比计划多生产80台,结果25天就完成了全月计划。这个厂十一月份计划生产多少台机器?(因果关系)

  【分析与解答】

  这道整数应用题,我们无论是从条件想起,还是从问题想起,都不容易找到解决问题的办法。如果抓住题目中的“25天完成全月计划”这一条件深入思考:这个厂为什么用25天就完成了全月的生产任务?这最后5天的生产任务为什么能提前完成?问题就能很快地得到解决了。因为实际每天比原计划多生产80台,这样生产了25天,就比计划25天多生产了:80×25=2000(台)

  就把原来计划在后5天的生产任务给提前完成了。换句话说,这2000台机器就是原计划后5天的生产任务。

  那么,原计划每天生产的台数应为2000÷5=400(台)

  原计划十一月份的生产任务应为400×30=12000(台)

  5、新光机器厂装配拖拉机,第一天装配50台,第二天比第一天多装配5台,第三、第四两天装配台数是第一天的2倍多3台,平均每天装配多少台?(移多补少)

  【分析与解答】

  按惯例,应该用四天装配的总台数除以4,综合算式为:[50+(50+5)+(50×2+3)]÷4=52(台)。如果采用移多补少的方法,将会十分简便。假设每天都装配50台,那么四天一共多装配5+3=8(台),把这8台平均分成四份,8÷4=2(台),因此,平均每天装配50+2=52(台),综合算式为:50+(5+3)÷4=52(台),你看,这种解法多么巧妙!

  6、有6个木工和一个漆工完成了一套家具生产任务。每个木工各得200元,漆工的工资比7个工人的平均工资多30元。漆工得了多少元钱?(移多补少)

  【分析与解答】

  根据“移多补少”的原则,漆工比平均工资高出的30元,分别补给6个木工以后,6个木工的平均工资恰好应该是7个人的平均工资:30÷6=5(元)从而,7个人的平均工资应是200+5=205(元)漆工的工资是205+30=235(元)

  7、百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里。如果2个纸箱同1个木箱装的球鞋一样多,想一想:每个木箱和每个纸箱各装多少双球鞋?(等量代换)

  【分析与解答】

  我们根据“2个纸箱同一个木箱装的球鞋一样多”,把木箱换成纸箱,也就是说,把300双球鞋全部用纸箱装,不用木箱装。根据已知条件,2个木箱里的球鞋刚好装满4个纸箱,再加上原来已装好的6个纸箱,一共是10个纸箱。这样,题目就变为“把300双球鞋平均装在10个纸箱里,平均每个纸箱装多少双球鞋?”可以求出每个纸箱装多少双球鞋。也就能求出一个木箱装多少双球鞋。300÷(2×2+6)=30(双)30×2=60(双)

  8、如图正方形面积是50平方厘米。求阴影部分的面积。(等量代换)

  【分析与解答】

  要求阴影部分的面积,必须知道正方形的面积和扇形的面积,然后用正方形的面积减去扇形的面积求得阴影部分的面积。正方形的面积已知道,扇形的面积还不知道。要求出扇形面积必须知道扇形的`半径,而扇形的半径就是正方形的边长,从正方形的面积求正方形边长,小学阶段没有学过,怎么办呢?如果把计算扇形面积的公式“S=πr2÷4”认真观察、思考一下,就不难发现这里的r2恰好是正方形边长的平方,就等于正方形的面积50平方厘米。所以,计算扇形面积只要用“50”代换算式中的r2就可以了,没有必要再求出半径r的长度。因此,这道题可列式解答如下:50-3.14×50÷4=10.75(平方厘米)

  9、“2×3×5×7×11×13×17”的各位数字之和是多少?(整体思维)

  【分析与解答】

  解这道题的一般思路是先算出这个连乘式的结果,再把它各位上的数字相加。但这是一道“华杯”赛决赛的一道口试题,要求在1分钟内报出答案。在口试中,规定时间内答不出题是不能得分的。怎么办呢?

  办法是有的。只要把算式中的每个数都仔细观察一番,抓住这些数字特点,可以绕开“把7个数连乘”这段弯路。

  你看,式中有2,又有5,2×5=10,10与其它5个数的积相乘,只要在末尾添个0,不影响各位上的数字和。

  再看看,式中有7,11,13。你如果记得:7×11×13=1001,而1001与位数比它少的自然数相乘,积的各位上除0以外,就是这个数重复一遍,如51×1001=51051。题中7个数除2,5,7,11,13外,还有3×17=51。所以,本题的答案为(5+1)×2=12。

  10、有甲、乙、丙三种货物。如果买甲3件,乙7件,丙1件,共花去3.15元;如果买甲4件,乙10件,丙1件,共花去4.20元。现在买甲、乙、丙各1件,需要花多少钱?(整体思维)

  【分析与解答】

  数学家在分析这个问题时,同一般人不一样。在数学家眼中,“X1+X2+X3”可以看成一个整体,“求X1+X2+X3=?”与“分别求X1=?,X2=?,X3=?”是两回事。如果用题中的条件直接能求出X1+X2+X3这个“和”,那么,把X1、X2、X3分别求出来再相加,就是“绕弯路”、“自讨苦吃”了。

  由已知条件可得:

  买甲3件,乙7件,丙1件,花3.15元①

  买甲4件,乙10件,丙1件,花4.20元②

  要想求出买甲1件,乙1件,丙l件,共需花多少钱,必须使上述①与②中对应的“件数”相差1。为此,可转化已知条件:

  将条件①中的每个量都扩大3倍,得:

  买甲9件,乙21件,丙3件,花9.45元③

  将条件②中的每个量都扩大2倍,得:

  买甲8件,乙20件,丙2件,花8.40元④

  所以,买甲、乙、丙各一件,共需要花的钱数为:9.45-8.40=1.05(元)

  小学三年级数学思维训练4

  1.如果△是○的24倍,下面哪个算式是对的。

  (1)△+24=○

  (2)○+24=△

  (3)△24=○

  (4)○24=△

  2.在每行里填上括号并在()里填上适当的运算符号,使运算结果等于右边的数。

  (1)3()3()3()3=1

  (2)3()3()3()3=2

  (3)3()3()3()3=3

  (4)3()3()3()3=4

  3.找出下面各行数的.排列规律,在()里填上合适的数。

  (1)4,8,16,32,(),()

  (2)243,81,27,9,(),()

  (3)2,5,11,23,47,(),()

  (4)8,24,12,36,18,(),()

  4.不进行计算你能看出下面哪几组题的得数相等吗。

  (1)38+42+6()38+(42+6)

  (2)799+82()82+979

  (3)563+56()56(3+1)

  (4)300(23)()30023

  5.在下面()里填上和左边不同的运算符号,使两边的计算结果相同。

  (1)2+4+1=2()4()1

  (2)12-6-2=12()6()2

  (3)2+8+3=2()8()3

  (4)13+24=1()3○2()4

  6.在下面每个算式的方框里填上相同的两位数,使算式两边相等。

  (1)3()=1()

  (2)6()=2()

  7.三年级三个班一共有111名同学。一班有35人,二班和三班的人数相等。二班、三班各有多少人?

  8.小虎家养了18只母鸡,五月份下了450个蛋,比四月份多下了36个。这两个月一共下了多少个蛋?

  9.用7、8、0、5四个数字,你能组成几道乘法式题?

  10.学校买来4个足球用去220元。一个篮球的价钱比一个足球贵8元,买4个篮球要用多少钱?(用两种方法解答。)

  • 相关推荐

【小学三年级数学思维训练】相关文章:

三年级数学思维训练09-27

跑步训练计划09-27

网球的训练计划04-10

小学三年级数学乘除法的计算技巧03-10

体操训练总结(精选14篇)04-20

小学三年级数学下册第一单元知识点03-02

小学三年级下册数学知识点归纳汇总02-16

半程马拉松的训练计划11-08

新兵训练感想(精选5篇)01-24