高一函数的课件

2018-02-21 课件

  高一函数课件【1】

  重点难点教学:

  1.正确理解映射的概念;

  2.函数相等的两个条件;

  3.求函数的定义域和值域。

  一.教学过程:

  1. 使学生熟练掌握函数的概念和映射的定义;

  2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。

  二.教学内容:

  1.函数的定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:

  (),yfxxA

  其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的.集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素 定义域、对应关系和值域。

  3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

  一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。

  4. 区间及写法:

  设a、b是两个实数,且a

  (1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

  (2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

  5.函数的三种表示方法 ①解析法 ②列表法 ③图像法

  高一函数课件【2】

  教学目标:

  1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

  2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。

  3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。

  教学重点、难点:

  1、 重点:指数函数的图像和性质

  2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。

  教学方法:引导——发现教学法、比较法、讨论法

  教学过程:

  一、事例引入

  T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?

  S: --------

  T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

  C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )

  S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),

  从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。

  二、指数函数的定义

  C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。

  问题 1:为何要规定 a > 0 且 a ≠1?

  S:(讨论)

  C: (1)当 a<0 时,a x 有时会没有意义,如 a=﹣3 时,当x=

  就没有意义;

  (2)当 a=0时,a x 有时会没有意义,如x= - 2时,

  (3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。

  巩固练习1:

  下列函数哪一项是指数函数( )

  A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

【高一函数的课件】相关文章:

1.高一函数的奇偶性课件

2.高一功率的课件

3.if函数的应用说课课件

4.高一数学函数的教案

5.高一洋流课件

6.高一英语sports课件

7.高一必修2政治课件

8.高一函数课件

上一篇:高一洋流课件 下一篇:高一化学反应速率课件
相关推荐