植树问题(新人教版)教案

2018-03-08少伟 教案

  篇一:植树问题(新人教版)教案

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数

  教学过程:

  一、设计情景、引入课题

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、探索新知,探究规律

  1、出示招聘启事

  在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

  2、出示例题,理解题意:

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  3、出示合作要求。

  (1)教师讲解小组合作要求。

  (2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)

  (3)教师巡视,指导学生小组合作。

  (4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

  (5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

  4、以小组为单位探究棵数与间隔数间的关系:

  (1)数一数:数出棵数和间隔数。

  (2)比一比:比较出棵数和间隔数之间的规律。

  两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

  只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

  两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

  三、课堂小结、反馈练习

  1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  篇二:植树问题(新人教版)教案

  第一课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。

  3、培养学生认真审题的好习惯。

  重难点

  重点:掌握“两端都要种的植树问题”的解题方法。

  难点: 掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。

  教学过程

  一、引入。

  1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。

  2、小游戏。

  师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。 学生动手试一试。

  小组讨论,看一看能得出什么结论。

  集体交流,通过刚才的游戏,你得出了什么结论。

  通过操作,观察讨论后得出系扣的个数比间隔数多1。

  3、验证。

  学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。

  指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。

  4、练习。

  同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。 相互评价,互提建议。

  二、新授

  1、出示教学教材第106页例1。

  (1)读题,理解题意。

  (2)交流从题目中获取的信息和所要解决的问题。

  (3)学生动手试一试。

  (4)小组看图讨论,各自交流。

  想法一:100÷5=20,所以要准备20棵树苗。

  想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。

  (5)猜测。

  猜一猜,谁的思路对。

  (6)集体反馈,发现规律。

  经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。

  (7)教师讲解,帮助学生理解规律。

  因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。

  (8)研究列式的方法。

  100÷5=20(段)

  20+1=21(棵)

  教师表扬能自己正确列式的学生,并请他们阐明思考过程。

  2、尝试。

  (1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?

  (2)读题,理解题意。

  (3)明确已知条件和所求问题。

  (4)找寻数量间的关系。 同伴探究,并得出结论。

  (5)独立列出算式。

  (6)集体反馈。

  指名板书:18÷3=6(段)

  6+1=7(盆) 请学生分别说出每步的意思。

  3、巩固练习

  1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?

  2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?

  3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?

  4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?

  第二课时

  教学目标

  1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。

  2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。

  重难点

  重点:掌握“两端都不种的植树问题”的解题方法。

  难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。

  教学过程

  一、复习

  提问:已知全长和间隔长度,怎样求棵数?

  教师根据学生回答板书:棵数=全长÷间隔长度+1 那么已知间隔长度和棵数,怎样求全长呢? 答后板书:全长=间隔长度×(棵数-1)

  二、新授

  今天我们继续来研究另一种植树问题。

  1)出示教材第107页例2。

  (1)读题,理解题意。

  (2)投影出示教材图,帮助理解。

  (3)分组看图讨论。

  (4)尝试列式计算。

  (5)集体交流。

  教师板书:60÷3=20(段) 20-1=19(棵) 19×2=38(棵)

  (6)质疑。

  为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2) (7)比较与例1的不同。 先分组讨论,再集体交流。

  例1是两端都要栽树,所以棵数比间隔数多1。 例2是两端都不栽树,所以棵数比间隔数少1。 (8)教师讲解,帮助学生理解。

  教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。


植树问题(新人教版)教案

http://m.ruiwen.com/jiaoan/1310754.html

上一篇:幼儿园植树教案 下一篇:三年级植树问题教案
[教案]相关推荐